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Chapter 1
Introduction

This thesis is concerned with the ultrafast dynamics of coupled electronic and nuclear
vibrational motion that unfold when molecules are excited by light. Herein, ultrafast
denote processes taking place on the femtosecond to picosecond timescale—the fun-
damental timescale of nuclear vibrational motion—ubiquitous in chemical reaction
dynamics [1].

1.1 Ultrafast Excited-State Dynamics

Ultrafast photoinduced processes result from the complex charge and energy flows
which are central to chemical reaction dynamics [2, 3]. Dissociation was among the
first of such processes to be followed in real time in the seminal works on ICN and NaI
from the group of Nobel laureate Ahmed Zewail [4–7]. The interplay between charge
and energy can lead to many other processes such as isomerization, which in retinal
initiates the process of vision, [8–10] bond formation, which in stacked DNA bases
causes mutagenic photolesions, [11–13] or internal conversion, by which electronic
energy can be dissipated in e.g. conjugated molecules [14–17].

One distinguishing feature of these ultrafast excited-state processes is that they
involve more than one potential energy surface—a concept we will introduce in more
detail in the next chapter. By this merit, the work presented inhere is not only relevant
for reactions initiated by short laser pulses but indeed for a large range of chemical
and physical processes [18]. As an example take electron transfer, where, following
the Franck-Condon principle, the transfer of charge takes place near the intersection
of the potential energy surface of the reactant and that of the product, cf. Fig. 1.1a
[19–21]. Similarly, atomic and molecular reactive scattering [22–24] and reactive
scattering off surfaces, [25–27] which is of central importance in heterogeneous
catalysis, [28, 29] often fall in this range, cf. Fig. 1.1b. Both electron transfer and
reactive scattering are fundamental to the very notion of chemistry as are the energy
transfer processes on which we will focus.

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses, 3
DOI: 10.1007/978-3-319-00386-3_1, © Springer International Publishing Switzerland 2013
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Fig. 1.1 Examples of processes involving more than one potential energy surface. (a) Electron
transfer takes place near the intersection of two potential energy surfaces as the system changes
from the potential energy surface of the reactant to that of the product [19], and (b) reactive scattering
off a metal surface [28, p. 421]

Another distinguishing feature of ultrafast processes is the very timescale on which
they take place. A relevant question in this context is whether the short timescale
directly reflects a restriction in the scope of the dynamics that unfold, or more pre-
cisely, if the short timescale is an indication that only a restricted region of phase
space is explored before the process takes place? Reduced-space dynamics is a reflec-
tion of ergodicity breaking which will be a central theme in this thesis. The ergodic
hypothesis of thermodynamics states that a system left to itself will sooner or later
pass through every energetically available point in phase space [30, 31, pp. 100–101,
pp. 545–555]. A system is termed ergodic if it satisfies this hypothesis. Ergodicity
breaking occurs if the timescale is too short for all these points to be visited – i.e.
ergodicity is essentially a question of relative timescales. Herein, we are concerned
with processes initiated by a femtosecond laser pulse. Such activation creates a
nuclear wavepacket, or equivalently a phase space distribution, which is localized
in space and energy due to the coherence of the short laser pulse. If the timescale
for a subsequent process is shorter than the timescale for loss of coherence of the
wavepacket, or equivalently for randomization of the initial phase space distribu-
tion, the process is non-ergodic, and the dynamics will be continuously localized,
cf. Fig. 1.2(a) [32, 33]. The (non-)ergodicity of a process thus rests on the relative
timescales of internal vibrational energy redistribution (IVR) and that of the process
in question. If the timescale for IVR is relatively fast, energy will be redistributed
efficiently and uniformly before and during the process whereby a microcanoni-
cal ensemble will be maintained, and the process will exhibit ergodic behavior, cf.
Fig. 1.2(b). In contrast, the observation of localized coherent dynamics following
preparation by a short laser pulse entails a given process to be fast on a timescale
relative to that of IVR and thus to exhibit non-ergodic behavior.

The intent of this thesis is to exhibit the non-ergodic nature of ultrafast excited-
state dynamics. In particular, we are interested in the process of internal conversion
where a molecule passes from one potential energy surface to another such that
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Fig. 1.2 Illustration of non-ergodic and ergodic dynamics in phase space following initial prepara-
tion of a localized phase space distribution by a femtosecond laser pulse. (a) The initial distribution
stays localized as the reaction proceeds, and (b) fast redistribution of energy to the entire phase
space of the reactant ensures a microcanonical ensemble is maintained during reaction

electronic energy is transformed into nuclear kinetic energy. With the concept of non-
ergodicity at hand, we seek to understand the process and its timescale from simple
structural and energetic properties. Given a molecular structure, can we determine
which degrees of freedom are important in the internal conversion process, i.e. where
are the dynamics localized? In this respect, how does a particular substitution affect
the rate of internal conversion? In effect, can we propose rules of thumb as to how
structural and energetic parameters affect the internal conversion process?

To be able to address these questions, we carry out simulations and experiments on
a series of molecules. As an example of weak coupling between the potential energy
surfaces involved, we investigate the S2 → S1 transition between a Rydberg and a
valence state in seven cycloketones which differ by ring size as well as substitution
pattern. As examples of strong coupling, we investigate the S1 → S0 transition in
three cyclopentadienes, which indirectly also involves the S2 state, as well as the
S1 → S0 transition in dithiane. These systems touch upon not only electronic energy
dissipation but also isomerization and bond dissociation.

The thesis is organized as follows: as a starting point, we will in Sect. 1.2 intro-
duce the Born-Oppenheimer approximation which provides us with the concept of a
potential energy surface essential to our mechanistic trajectory-based picture of mole-
cular dynamics. In Sect. 1.3, we will detail whereby the methods of time-resolved
mass spectrometry and photoelectron spectroscopy can be used to investigate the
dynamics of coupled electronic and nuclear vibrational motion, and in Chap. 2, we
describe the experimental setup used to perform these experiments. Methods of data
analysis are presented in Chap. 3. In Chap. 4, we provide an introduction to the Multi-
Configuration Time-Dependent Hartree and Ab Initio Multiple Spawning method-
ologies for simulating molecular dynamics, and in Chap. 5, it is detailed how these
simulations can be used to calculate time-resolved photoelectron spectra. The part
of the thesis dealing with the theoretical and computational approaches is completed
by Chap. 6, in which we provide a short introduction to the methods of electronic

http://dx.doi.org/10.1007/978-3-319-00386-3_2
http://dx.doi.org/10.1007/978-3-319-00386-3_3
http://dx.doi.org/10.1007/978-3-319-00386-3_4
http://dx.doi.org/10.1007/978-3-319-00386-3_5
http://dx.doi.org/10.1007/978-3-319-00386-3_6
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structure calculation employed. If the reader is familiar with the experimental and/or
theoretical methods, the relevant chapters can be skipped. The results and discussion
part of the thesis is divided into three main chapters detailing the findings relating
to the cycloketones, Chap. 7, the cyclopentadienes, Chap. 8, and dithiane, Chap. 9.
Finally, a summarizing discussion of the findings is presented in Chap. 10.

We will throughout this thesis employ atomic units in formulas, i.e. the reduced
Planck’s constant � = 1, the elementary charge e = 1, and the electron mass me = 1.

1.2 The Born-Oppenheimer Approximation

To describe the time-evolution of a molecular system, we need to solve the time-
dependent Schrödinger equation for the total electronic and nuclear wavefunction

i
∂

∂t
�(r, R, t) = Ĥ�(r, R, t) (1.1)

with electronic and nuclear coordinates denoted by r and R respectively. Throughout
this thesis, we will consider the non-relativistic molecular Hamiltonian for both nuclei
and electrons given by

Ĥ = T̂n + T̂el + V̂ = T̂n + Ĥel (1.2)

T̂n and T̂el are the nuclear and electronic kinetic energy operators respectively, and
V̂ is the potential energy operator for both nuclei and electrons. In the Born repre-
sentation, the wavefunction is expanded according to [34–36]

�(r, R, t) =
∑

v

�(v)(R, t)ψ(v)(r; R) (1.3)

The electronic functions ψ(v)(r; R) depend parametrically on the nuclear coordi-
nates R. For a given value of R, these functions are solutions to the clamped-nuclei
eigenvalue equation

Ĥelψ
(v)(r; R) = V (v)(R)ψ(v)(r; R) (1.4)

The functions ψ(v)(r; R) constitute a complete set of electronic functions and define
the electronic energies V (v) from the above equation. Inserting the representation
of the total wavefunction in Eq. 1.3 into the time-dependent Schrödinger equation
yields an equation for the nuclear functions

i
∂

∂t
�(v)(R, t) =

(
T̂n + V (v)(R)

)
�(v)(R, t) −

∑

w

�̂(v,w)�(w)(R, t) (1.5)

http://dx.doi.org/10.1007/978-3-319-00386-3_7
http://dx.doi.org/10.1007/978-3-319-00386-3_8
http://dx.doi.org/10.1007/978-3-319-00386-3_9
http://dx.doi.org/10.1007/978-3-319-00386-3_10
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Here, �̂(v,w) are derivative coupling operators. If one makes an adiabatic approxima-
tion and replaces the Born representation of the wavefunction by a single term, i.e.

�(r, R, t) = �(v)(R, t)ψ(v)(r; R) (1.6)

the equation for the nuclear functions reduces to

i
∂

∂t
�(v)(R, t) =

(
T̂n + V (v)(R) − �̂(v,v)

)
�(v)(R, t) (1.7)

Together with Eq. 1.6 for the wavefunction, this equation constitutes the Born-Huang
adiabatic approximation [37]. If the on-diagonal derivative coupling term is further-
more neglected, one arrives at the Born-Oppenheimer adiabatic approximation [38]

i
∂

∂t
�(v)(R, t) =

(
T̂n + V (v)(R)

)
�(v)(R, t) (1.8)

The appropriateness of the separation of nuclear and electronic motion in the Born-
Oppenheimer approximation is a consequence of the large difference between nuclear
and electronic masses which usually results in the neglected derivative coupling
terms being very small. However, this is not always the case as we will see below.
The solutions to Eq. 1.4 provide an N -dimensional hypersurface of the electronic
energy for a given electronic state v where N refers to the number of internal nuclear
degrees of freedom. In the Born-Oppenheimer approximation, this hypersurface acts
as a potential energy surface on which the nuclei move, and it is thus a central concept
for the understanding of molecular dynamics from a mechanistic point of view.

In rectilinear coordinates, the derivative or non-adiabatic coupling operators of
Eq. 1.5 for which v �= w can be given in terms of first- and second-order couplings

�̂(v,w) = 2D̂(v,w) + Ĝ(v,w) (1.9)

with

D̂(v,w) =
N∑

κ

1

2mκ
d̂(v,w)
κ

∂

∂Rκ
(1.10)

Ĝ(v,w) =
N∑

κ

1

2mκ

〈
ψ(v)

∣∣∣
∂2

∂R2
κ

∣∣∣ψ(w)
〉

(1.11)

Corrections to the single-surface adiabatic approximation of Eq. 1.6 can be intro-
duced by evaluating these mass-dependent operators which couple the adiabatic
electronic states giving rise to non-adiabatic nuclear dynamics. The derivative cou-
pling vector d(v,w), which collects the elements d̂(v,w)

κ from Eq. 1.10, is given by
[36, 39]
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Fig. 1.3 Example of a peaked
conical intersection in the
branching space of the gra-
dient difference and scaled
derivative coupling vectors.
These coordinates linearly
lift the degeneracy of the two
potential energy surfaces. The
degeneracy is maintained in
the seam or intersection space
of nuclear coordinates, which
is orthogonal to the branch-
ing space, represented by the
dashed line [44, 40]
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d(v,w)(R) = 〈ψ(v)|∇nψ
(w)〉 = 〈ψ(v)|(∇n Ĥel)|ψ(w)〉

V (w)(R) − V (v)(R)
(1.12)

where ∇n denotes the nuclear derivative operator. The last form of the derivative cou-
pling vector exhibits that the non-adiabatic coupling is negligible for well-separated
potential energy surfaces. However, the coupling diverges when the surfaces come
into close proximity and is singular at conical intersections where two or more sur-
faces become degenerate [40–42]. Figure 1.3 depicts a conical intersection in the
so-called branching space of the scaled derivative coupling and gradient difference
vectors given by

h(v,w)(R) = 〈ψ(v)|(∇n Ĥel)|ψ(w)〉 (1.13)

g(v,w)(R) = ∇n

(
V (w)(R) − V (v)(R)

)
(1.14)

From this two-dimensional representation, it is not evident that conical intersections
are indeed extended high-dimensional seams of dimension N − 2 in nuclear coordi-
nate space. These seams act as effective doorways connecting the adiabatic potential
energy surfaces. Thus, the presence of a conical intersection indicates the possibil-
ity for ultrafast non-adiabatic dynamics—nuclear dynamics involving more than one
adiabatic surface—due to the diverging coupling between the adiabatic electronic
states in their vicinity [41, 43].

Whereas the solutions to Eq. 1.4 for different v’s provide a set of adiabatic elec-
tronic states, a diabatic electronic basis can be defined by a nuclear coordinate depen-
dent unitary transformation of the adiabatic wavefunctions

ψ̃(v)(r; R) =
∑

w

U (v,w)(R)ψ(w)(r; R) (1.15)
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under the requirement that d(v,w) = 0 in the new basis. For triatomic or larger
molecules, this is generally not possible [45]. Instead, one can seek to minimize the
quantity within a finite subspace resulting in quasidiabatic [46, 47] or regularized
diabatic states [48, 49]. The adiabatic to diabatic transformation is only defined up
to a constant which can be fixed by setting the adiabatic basis equal to the diabatic
basis at one specific value of the nuclear coordinates. Thus, the diabatic basis is
not unique. In a rigorous diabatic basis, i.e. a basis in which the derivative couplings
have been completely removed by the transformation in Eq. 1.15, the time-dependent
Schrödinger equation for the nuclear functions is given by

i
∂

∂t
�̃(v)(R, t) = T̂n�̃

(v)(R, t) +
∑

w

W (v,w)(R)�̃(w)(R, t) (1.16)

Here, the couplings between the electronic states are given by the electronic off-
diagonal elements of the diabatic potential coupling W (v,w) which are matrix ele-
ments of Ĥel in the diabatic basis. The couplings between electronic states in the
diabatic representation are thus potential couplings as opposed to the derivative cou-
plings, which depend on the nuclear kinetic energy operator, found in the adiabatic
representation. Numerically, the potential couplings are easier to handle why the dia-
batic representation is often preferred when performing nuclear wavepacket dynam-
ics, however, the adiabatic representation can also be used as we will see in Sect. 4.2.
The diabatic potential energy surfaces given by the on-diagonal elements W (v,v)

are generally smooth functions of the nuclear coordinates [50, 51] and can preserve
the configurational character of the electronic states [52]. In contrast, the adiabatic
states preserve the energetic state ordering. To avoid the adiabatic to diabatic trans-
formation, one can also directly construct potential energy surfaces which are smooth
functions of the nuclear coordinates as done in Sect. 4.3. This diabatization by ansatz
is inherently approximate as the derivative couplings are assumed negligible in the
diabatic basis. Nevertheless, the strategy can be useful in particular because the dia-
batic to adiabatic transformation is unique and is obtained by diagonalization of the
matrix representation of the diabatic potential operator to obtain uncoupled states.

1.3 Pump-Probe

We will in this chapter describe the principle underlying pump-probe experiments as a
means to interrogate dynamical processes. In particular, we will describe techniques
involving short laser pulses in the visible and UV regime where the laser-matter
interaction ultimately leads to ionization, and charged particles are detected. The
application of these techniques to the investigation of non-adiabatic dynamics will
be detailed.

http://dx.doi.org/10.1007/978-3-319-00386-3_4
http://dx.doi.org/10.1007/978-3-319-00386-3_4
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Fig. 1.4 Excitation of the
vibrational ground state wave-
function by a short laser pulse
leads to a wavepacket in the
excited state due to population
of a coherent superposition of
vibrational eigenstates within
the spectral bandwidth of
the pump pulse δωpu. The
wavepacket is initially local-
ized to a region δR in nuclear
coordinate space
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1.3.1 Time-Resolved Photoelectron Spectroscopy
and Mass Spectrometry

In a pump-probe experiment, a system initially in a stationary state will through
interaction with the pump be taken to a non-stationary state and consequently evolve
in time. After a well-defined time-delay, interaction with the probe will interrogate
the system to determine the evolution as a function of the time-delay. In time-resolved
photoelectron spectroscopy (TRPES) [53–58] and mass spectrometry (TRMS), [4,
59–63] the interaction with the pump pulse leads to electronic excitation of the
molecule under investigation. This, in effect, is a projection of the ground state
nuclear probability amplitude distribution onto the excited state. Due to the temporal
coherence and spectral bandwidth of the laser pulse, this results in the formation of a
quantum state localized in real space (Fig. 1.4). By analogy with classical mechanics,
this state will start to oscillate on the excited state potential energy surface. From
a different point of view, the pump pulse populates a coherent superposition of
vibrational eigenstates in the excited state denoted by v

|�(v)(t)〉 =
∑

j

C (v)
j e−iω(v)

j t |�(v)
j 〉 (1.17)

Due to the differing phase factors of the vibrational eigenstates |�(v)
j 〉, this superpo-

sition does not constitute a stationary state but will evolve in time. After a specific
time-delay, the interaction with the probe pulse leads to ionization of the molecule. In
this process, the wavepacket created by the pump pulse is projected onto the ioniza-
tion continua of cationic and photoelectron states. TRPES involves measurement of
the kinetic energies and angular distributions of the ejected photoelectrons, i.e. it is
a frequency-dispersed technique, whereas TRMS involves measurement of the com-
plementary cationic fragments, i.e. it is a frequency-integrated, but mass-dispersed,
technique.
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1.3.2 Probing Dynamics by TRPES and TRMS

Under certain assumptions, the time-resolved photoelectron spectrum obtained by
ionization of the wavepacket given in Eq. 1.17 to the cationic state w can be given as

σ(Ek,�t) ∝
∫

|μ(w,v)(Ek; R)|2F(ωpr, Ek; R)|�(v)(R,�t)|2 dR (1.18)

where Ek is the kinetic energy of the ejected photoelectron, �t is the time between
pump and probe pulses,ωpr is the center frequency of the probe, and R denote nuclear
coordinates. This expression will be derived in Sect. 5.1. The expression represents
the spectrum as the overlap between three terms: the square of the electronic tran-
sition dipole moment, an energy window function, and the density of the nuclear
wavepacket. From this expression, it will be clear how TRPES is sensitive to both
nuclear and electronic dynamics.

When population transfers from the wavepacket in state v to form a wavepacket
in another state v′, the density of the nuclear wavepacket in state v decreases. Thus,
population transfer is reflected by a decrease in intensity of bands in the spectrum
as a function of �t . The simultaneous formation of a new wavepacket in state v′
will be reflected by the appearance of bands, the spectral position and intensity
of which will be determined by the window function and by the transition dipole
moment and nuclear density respectively. The intensity of these new bands will
increase with �t as more and more population is transferred from state v to state
v′. The situation is exemplified by the schematics in Fig. 1.5 for two distinct cases
which also illustrate the sensitivity of TRPES to the electronic configuration of the
states involved. Employing Koopmans’ theorem, [64] different neutral states can
be shown to correlate with different cationic states as depicted in Fig. 1.5(a) – so-
called complementary ionization correlation [65, 66]. These correlations will be
reflected in the magnitude of the electronic transition dipole moment between the
neutral and cationic states with a large magnitude for pairs of states that correlate and
vice versa. Consequently, ionization will primarily occur from a given neutral state
to a specific cationic state and following an electronic transition between neutral
states, the cationic state to which ionization occurs can thus change. The case of
corresponding ionization correlation, where the neutral excited states correlate with
the same cationic state, [16] is shown in Fig. 1.5(b).

To appreciate the sensitivity of TRPES to nuclear dynamics, consider the simple
single trajectory classical limit where the density of the nuclear wavepacket is given
by a δ-function in nuclear coordinate space. In this limit, the spectrum is simply
given by

σ(Ek,�t) ∝
∫

|μ(w,v)(Ek; R)|2F(ωpr, Ek; R)|δ(R − R0(�t)) dR

= |μ(w,v)(Ek; R0(�t))|2F(ωpr, Ek; R0(�t)) (1.19)

http://dx.doi.org/10.1007/978-3-319-00386-3_5
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Fig. 1.5 A non-adiabatic transition of a nuclear wavepacket from S2 → S1 is reflected in a change
of the kinetic energy of the ejected photoelectron Ek . Conservation of nuclear kinetic energy upon
ionization has been assumed in all cases. (a) Ionization out of two different neutral excited states
v and v′ correlating with two different cationic states w and w′ respectively. The electronic con-
figurations are shown on the left. (b) Ionization out of two different neutral excited states v and v′
correlating with the same cationic state w

Thus, nuclear dynamics is reflected in the spectrum through intensity modulations
due to the dependence on the nuclear coordinates, which change as a function of
�t , of the electronic transition dipole moment. Furthermore, the dynamics can be
reflected in spectral shifts in Ek with �t due to the energy window function. In one
limit, the window function is simply given by

F(ωpr, Ek; R0(�t)) = δ(V (v)(R0(�t)) − V (w)(R0(�t)) − Ek + ωpr) (1.20)

where V (v)(R0(�t)) and V (w)(R0(�t)) are the potential energies at R0(�t) of states
v and w respectively. The δ-function form clearly reflects the possibility for spectral
shifts. The window function given in Eq. 1.20 is valid when nuclear kinetic energy is
conserved upon ionization. When kinetic energy is not conserved upon ionization,
the photoelectron spectrum can exhibit indistinct features resulting in both nuclear
and electronic dynamics being hard to point out.

In favorable cases, TRMS is also sensitive to both nuclear and electronic dynam-
ics. TRMS is a frequency-integrated technique, and the total ion yield is given as the
integral of the expression in Eq. 1.18 over photoelectron kinetic energies. Thus,
the nuclear and electronic dynamics described above which give rise to changes in
the total intensity of the spectrum are also directly reflected in the total ion yield.
Furthermore, changes in the fragmentation pattern upon ionization can also directly
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reveal nuclear [67–69] or electronic dynamics, [70] but these correlations are not nec-
essarily easily deducible. A very direct way of ensuring that an electronic transition
is observed by changes in the ion yield is to chose the probe energy such that ioniza-
tion out of one but not lower-lying electronic states lies within the energy window
function. However, ionization by multiple probe photons cannot be distinguished
from the one photon case which can obscure results. On the other hand, ionization
by different number of probe photons is readily distinguished in TRPES due to the
frequency-dispersed detection.
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Chapter 2
Experimental Setup

We will in this chapter describe the experimental setup for conducting time-resolved
photoionization experiments such as time-resolved mass spectrometry (TRMS) and
photoelectron spectroscopy (TRPES) on gaseous samples. The main setup consists
of a laser system capable of producing laser pulses of a femtosecond time duration,
a means of preparing a cold gaseous sample, and a detection apparatus for charged
particles. We will in the following sections describe these components.

2.1 The Laser System and Optical Setup

The laser system and optical setup used in the experiments is schematically illustrated
in Fig. 2.1. The laser system consists of a Ti:Sapphire oscillator (Spectra Physics
Tsunami, 80 MHz, 800 nm, 80 fs, 700 mW) which is pumped by a Nd:YLF continuous
wave (CW) laser (Spectra Physics Millennia Pro Vs, 532 nm, 5 W). The oscillator
seeds a regenerative Ti:Sapphire amplifier (Spectra Physics SpitFire, 1 kHz, 800 nm,
100 fs, 1.1 W) which is pumped by a Q-switched Nd:YVO4 laser (Spectra Physics
Empower-15, 1 kHz, 527 nm, 100 ns, 6.7 W). The output of the amplifier is split and
used to pump an optical parametric amplifier (Light Conversion TOPAS-C, 240–
2600 nm) and a harmonic generation setup which can generate the second (2ω),
third (3ω), and fourth harmonic (4ω) of the fundamental. In addition to the laser
system, the setup also consists of a retro-reflector mounted on a computer-controlled
translatable stage on the harmonic generation arm of the optical setup. The stage
allows for changes to the path length of the harmonic generation arm and can thereby
be used to change the time-delay between pulses from the two arms. The beams
from the two arms are combined using a dichroic mirror, and the collinear beams are
focused into the vacuum chamber using a concave aluminium mirror. Pulses from
either arm can act as the pump pulses in the experiments, and pulses from the other
arm will act as the probes.

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses, 17
DOI: 10.1007/978-3-319-00386-3_2, © Springer International Publishing Switzerland 2013
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Fig. 2.1 Schematic overview of the laser system and optical setup including the stage used for con-
trolling the time-delay between the two laser pulses. Wavelengths and pulse durations are indicated
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Fig. 2.2 Schematic overview of the 2ω, 3ω, and 4ω generation setup. Polarization vectors are
indicated for the different harmonics, and the important optical elements are labeled

The harmonic generation setup is illustrated schematically in Fig. 2.2. The funda-
mental (800 nm) is split 25/75 in a beam splitter, and the larger fraction is frequency
doubled by type 1 second-harmonic generation (SHG) in a thin beta barium borate
(BBO) crystal. In a second BBO crystal, the co-propagating fundamental and second
harmonic (400 nm) create the third harmonic (267 nm) by type 2 sum-frequency gen-
eration (SFG). Two dichroic mirrors (267 nm HR) reflect the third harmonic towards
the third BBO crystal in which it combines with the smaller fraction of the funda-
mental split off by the beam splitter to create the fourth harmonic (200 nm) by type
1 SFG. This third BBO crystal is uncoated to avoid damage due to the UV radia-
tion. As BBO is hygroscopic, the crystal is constantly heated to 50 ◦C. The fourth
harmonic is reflected by two dichroic mirrors (200 nm HR) to split off the remaining
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fundamental and third harmonic. The third harmonic can easily be extracted from
the setup by removing the beam splitter and the first 267 nm HR whereas the second
harmonic can be extracted if the second BBO crystal is also removed.

2.2 Time-of-Flight Spectrometers

The vacuum chamber incorporating the time-of-flight (TOF) spectrometers as well
as the molecular beam generation is illustrated in Fig. 2.3. The setup can handle both
gaseous, liquid, and solid samples. In the case of liquid samples, the inert helium
carrier gas is bubbled through the sample at a backing pressure of 0.3 bar, and a
mixture of helium and sample molecules are let into the chamber through a stainless
steel inlet tube. Solid samples can be placed in a small heatable chamber at the end
of the inlet tube and sublimed into the helium carrier gas.

In the first chamber, the gas mixture continuously expands through a conical
nozzle (� = 100 µm) at the end of the inlet tube. In the course of the expansion, the
sample molecules are first accelerated to the velocity of the carrier gas whereafter they
start transferring energy to the carrier gas molecules through two-body interactions
thereby cooling their rotational and vibrational degrees of freedom [1–3]. Rotational
temperatures down to ∼2 K can be obtained with continuous inlet systems such as the
one in our setup whereas high-pressure pulsed valve systems can obtain temperatures
down to ∼0.4 K [3, 4]. The expansion beam is termed a supersonic molecular beam
as the speed of the carrier molecules (∼1750 m/s for He at room temperature [3]) can
exceed that of sound. The expansion of the mixture leads to a low-density sample
thereby eliminating intermolecular interactions providing an ensemble of molecules
in one or a few well-defined quantum states [5]. Approximately one centimeter from
the nozzle of the inlet tube, a skimmer (� = 200µm) ensures the formation of a
turbulence free molecular beam in the next chamber. From the middle chamber, the
beam passes through a pinhole (� = 1 mm) into the main interaction chamber where
it is intersected at a right angle by the laser beams.

The interaction between the laser pulses and the beam molecules leads to photoion-
ization forming cations and photoelectrons. These charged particles can be extracted
and detected at the top or bottom of the chamber by the respective detector. Thus, the
apparatus operates as either a TOF mass or photoelectron spectrometer but cannot be
operated in coincidence. The mass spectrometer can also be operated as a reflectron
TOF mass spectrometer although this mode of operation was not employed in this
work.

When operated as a mass spectrometer, the apparatus uses a two-field Wiley-
McLaren configuration [6]. The voltage difference VE = VA1−VA2 creates a uniform
field EE = −VE/ lE as shown in the inset of Fig. 2.3. This field extracts the cations
generated by the laser-molecule interaction. The voltage difference VA = VA2 − VL
creates another uniform field EA = −VA/ lA which accelerates the cations into the
field free flight tube above the accelerator grid. At the top of the flight tube, the
cations are incident upon the ion detector consisting of a set of chevron-stacked
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Fig. 2.3 Schematic overview of the vacuum chamber, molecular beam generation, and TOF spec-
trometers. The inset shows a close-up of the acceleration grid with typical voltages employed when
the apparatus is operated in ion mode. Measurements run in electron mode are field free, and all
grid connections are grounded. The typical pressures in the chambers (mbar) are indicated showing
the differential pumping. Dimensions are not to scale

micro-channel plates (MCP) operated at negative potential. A small DC voltage
(∼ 70 mV) is generated in an anode on the backside of the MCP stack when an ion
impinges on the detector. This voltage signal is subsequently sent to a time digitizer
card (FAST ComTec P7888-2(E)) in a computer. As the card also receives a trigger
signal from the laser system, the computer can register the TOF for the impinging
cations. The total TOF of the cations is given by the sum of the times spent in the
extraction, acceleration, and free flight regions which are given by [7]
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√
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It is assumed that all photoionization events occur at the same distance l from the
acceleration region, and that the initial velocity along the flight tube axis is zero. The
total TOF is dependent on the mass to charge ratio m/z, and the cations are therefore
separated into bunches when they reach the detector with the lightest first followed
by successively heavier masses (assuming identical charges). Taking into account
that the digitizer card records the TOF with respect to the laser trigger signal, which
is not identical to the time of photoionization, the masses of the recorded signal are
given by

m/z = Kion(t
TOF
ion − t0)

2 (2.4)

where all the spectrometer dependent parameters are collected into a single constant
Kion, and t0 measures the difference between the laser trigger and the time of pho-
toionization. The mass spectrometer is calibrated by measuring samples with know
mass spectra usually acetone, N , N -dimethylisopropylamine (DMIPA), and xenon.

When operated as a photoelectron spectrometer, all connections on the accelera-
tion grid are grounded. A tube of μ-metal shields the inside of the downward flight
tube from magnetic fields, and the experiments are (ideally) run field free. Further-
more, the surfaces of the accelerator are made from oxidized molybdenum which
has a high work function such as to reduce background photoelectrons. Nonetheless,
scattered photons can contribute to the background signal, and, therefore, an iris is
placed in the vacuum chamber before the interaction region, and a laser-grade CaF2
entrance window is used (CVI PW-1009-CFUV). The part of the photoelectrons gen-
erated by the laser-molecule interaction with a primarily downward pointing velocity
vector will be incident upon the electron detector. This detector consists of another
set of chevron-stacked MCPs operated at a positive potential. The anode is also oper-
ated at a high positive potential, and the signal from the electrons is thus at a high
DC potential. The timing electronics are protected by a capacitative decoupling of
the anode. The decoupled, negative DC voltage signal (∼10 mV) is passed through
a pre-amplifier (Phillips Scientific 6954B 100), and the amplified signal (∼500 mV)
is sent to the time digitizer card. Similar to the case of ions, the TOF is measured
which in this case is given by

tTOF
e = lF

√
1

2(Ek + E0)
(2.5)
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where Ek is the kinetic energy gained by the photoelectrons in the ionization process.
E0 is a correction term resulting from deviations from field free operation due to e.g.
contact potential terms leading to acceleration/decelleration of the photoelectrons.
The latter term is usually on the order of meV. lF is here the length of the downward
free flight path of the photoelectrons. Inverting the expression in Eq. 2.5 yields the
kinetic energy as a function of the TOF

Ek = Ke
(
tTOF
e − t0

)2 + E0 (2.6)

We have again collected parameters and constants into a single coefficient Ke, and
the time difference between trigger and photoionization is taken into account via t0.
Equation 2.6 provides the position of the spectral peaks, however, to determine the
full photoelectron spectrum, the Jacobian has to be taken into account to establish
the correct relative spectral intensities

σ(Ek) = σ(Ek(t
TOF
e ))

∣∣∣∣
dtTOF

e

dEk

∣∣∣∣ = σ(Ek(t
TOF
e ))

(
tTOF
e

)3

2Ke
(2.7)

When determining the mass spectrum, it is not necessary to take the Jacobian into
account as the cationic signals are only spread over a few TOF bins, i.e. the spectrum
consists of almost discrete peaks. Similarly to the case for ions, the parameters Ke,
E0 and t0 are determined from TOF spectra with sharp peaks of known energy usually
xenon and DMIPA.

The above procedures describe how to obtain mass and photoelectron spectra
σ(m/z) and σ(Ek) from the appropriate TOF spectra σ(tTOF

ion ) and σ(tTOF
e ). A Lab-

View program records the data from the time digitizer card and furthermore con-
trols the retroreflector stage. By repeating the above procedures for a given set of
pump-probe time-delays by moving the stage, time-resolved spectraσ(tTOF

ion ,�t) and
σ(tTOF

e ,�t) can automatically be recorded by the program from which the spectra
σ(m/z,�t) and σ(Ek,�t) can be determined.
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Chapter 3
Fitting of Experimental Data
and Cross-Correlation

The time-dependent spectra obtained by the procedures described in the previous
chapter provide a wealth of information on the dynamical processes of the molecules
investigated. To derive manageable data from the spectra, it is often assumed that
the individual dynamical steps investigated follow first-order kinetics [1]. In the
experiments, the time-resolution is limited by the instrument response function which
is dominated by the temporal cross-correlation (XC) between the pump and probe
pulses. Therefore, the spectra are fitted to functions of the form

σ(�t) = ϑxc(�t) ⊗ �(�t)
∑

j

A jϑ j (�t) (3.1)

Here, ϑxc(�t) is the XC component, �(�t) is the Heaviside step function, ϑ j (�t) is
the solution to a given kinetic model with amplitude A j , and ⊗ represents a convolu-
tion. When Eq. (3.1) is used for fitting full two-dimensional spectra, the amplitudes
A j are spectral components whereas when fitting one-dimensional transients, they
are simply scalars. The XC is assumed to be a Gaussian function. As an example, a
single first-order process is described by the form

σ(�t) = exp
[
−4 ln(2)�t2/τ2

xc

]
⊗ A1 exp [−�t/τ1] �(�t) (3.2)

where τxc is the full width at half maximum (FWHM) of the XC, and τ1 is the time
constant for the exponential decay also referred to as a lifetime. If τ1 � τxc, the
signal for times �t � τ1 is simply given by a constant amplitude. In this case, the
XC component can be determined from

σ(�t) = exp

[
−

(
2
√

ln(2)

τxc

)2

�t2

]
⊗ A1�(�t)

= A1
τxc

2
√

ln(2)

√
π

4
erfc

[
−2

√
ln(2)

τxc
�t

]
(3.3)
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Scheme 3.1 Example
of sequential first-order
processes where the two
first species give rise to the
same experimental spectrum
but with different amplitudes

M*
1

τ1→ M*
2

τ2→ M*
3

↓ ↓ ↓

A 1σ(M* ) A 2σ(M∗ )

where erfc is the complementary error function. This approach is usually employed
when determining the XC by use of N ,N -dimethylisopropylamine. If on the other
hand the system investigated does not follow first-order kinetics but exhibits an
impulsive response, i.e. a δ-function response, the signal will fully be given by the XC
component multiplied by the amplitude of the impulsive response. Such a response
can be observed if the multi-photon ionization by the pump and probe pulses is non-
resonant, and such a measurement can thereby also be used to determine the XC.
This approach is employed using xenon. Non-resonant components can generally
occur in experiments even if the pump is chosen to be resonant with a transition in
the sample molecules as contributions from non-resonant probe-pump ionization, i.e.
probe preceding pump, can be present. This contribution can be added to Eq. (3.1)
to obtain

σ(�t) = Axcϑxc(�t) + ϑxc(�t) ⊗ �(�t)
∑

j

A jϑ j (�t) (3.4)

More complex solutions than a single exponential decay can also arise from first-order
kinetics. As an example, this can occur if the process investigated follows sequential
first-order kinetics such as M∗

1 → M∗
2 → M∗

3, and the two species M∗
1 and M∗

2 give
rise to the same signal σ(M∗) but with different amplitudes. This situation is shown
in Scheme 3.1. In this case, the signal is given by a sequential biexponential decay

σ(�t) = exp
[
−4 ln(2)�t2/τ2

xc

]

⊗ (A1 exp [−�t/τ1] + A2 (1 − exp [−�t/τ1]) exp [−�t/τ2])�(�t)
(3.5)

As another example, if the decay of a given species follows first-order kinetics, but
the probability of observing the species is modulated by a periodic perturbation, a
suitable functional form is

σ(�t) = exp
[
−4 ln(2)�t2/τ2

xc

]

⊗ exp [−�t/τ1] (A1 + A2 cos[2π�t/T + φ])�(�t)
(3.6)

where A2 is the amplitude of the perturbation with period T and phase φ. We will
later show how electronic population decay modulated by nuclear motion can be
fitted using such a model. The different functional forms are exhibited in Fig. 3.1.

Experimental data are fitted to the models described above by non-linear least-
squares analysis, i.e. by minimizing the χ2 measure [2]
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Fig. 3.1 Examples of models used for fitting experimental data (blue) showing the individual
components (pink). The time constants τ1 and τ2 have been set to 1.5 and 4.5 ps respectively,
and A1/A2 = 2 except for the modulated exponential decay where A1/A2 = 5. The period
of the modulation T = 0.5 ps. The models have been convoluted by a XC with τxc = 0.2 ps.
(a) Exponential decay. (b) Modulated exponential decay. (c) Biexponential decay. (d) Sequential
biexponential decay

χ2 =
∑

i

(
ri

si

)2

≈
∑

i

r2
i

ci
(3.7)

Here, ri is the residual in the i th channel, and si is the standard deviation of the value
in channel i . Time-of-flight mass spectrometry and photoelectron spectroscopy result
from counting discrete events and follow Poisson statistics. If the number of counts is
large enough, the Poisson distribution can be approximated by a normal distribution,
and the standard deviation is simply given by the square root of the number of
counts in the channel, i.e. si = √

ci . The global optimization of χ2 is performed
using either a Levenberg-Marquardt [3, 4] or simulated annealing algorithm [5, 6]
as implemented in Matlab. Generally, simulated annealing outperforms Levenberg-
Marquardt in particular in cases with many parameters or noisy data.

The χ2 measure can also be used to determine statistical uncertainties in the fitted
parameters. Having obtained the parameters that minimize χ2 to the value of χ2

min,
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the standard deviation in a given parameter p can be calculated using [2]

sp = �p√
χ2 − χ2

min

(3.8)

Thus, the standard deviation is calculated by changing the value of the given parame-
ter by 1–2 % from the optimal value, i.e. by �p, and performing a new minimization
of χ2 with the parameter fixed. Inserting the new value of χ2 into the above equation
yields the standard deviation. It should be noted that this procedure only provides
statistical uncertainties whereas systematic uncertainty, e.g. due to the specific func-
tional form of the fit, is not reflected in the value.
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Part III
Theoretical Methods



Chapter 4
Nuclear Dynamics

Many methods exist for simulating nuclear dynamics ranging from classical trajectory
to full quantum wavepacket methods. When dealing with dynamics on several elec-
tronic states, some method of describing transfer between states has to be included.
This requirement excludes the use of purely classical methods, and one has to resort
to (approximately) solving the time-dependent Schrödinger equation

i
∂

∂t
�(r, R, t) = Ĥ�(r, R, t) (4.1)

with r and R representing electronic and nuclear coordinates respectively. In order to
accomplish such a task, a suitable representation of the wavefunction �(r, R, t) as
well as a method to propagate it in time is needed. The total wavefunction is usually
given as a product of an electronic and a vibrational wavefunction as described in
Sect. 1.2. With a complete set of diabatic or adiabatic electronic states, what remains
is to specify a representation of the nuclear wavefunction �(R, t). Two possible
approaches are

�(R, t) =
∑

j

C j (t)φ j (R) (4.2)

�(R, t) =
∑

j

C j (t)φ j (R, t) (4.3)

In the first approach, the time-dependence is fully contained in the coefficients, and
the wavefunction is expanded in a set of time-independent basis functions. These
functions are usually chosen as an appropriate set such as harmonic oscillator or
Morse eigenfunctions for vibrational degrees of freedom. Pseudo-spectral methods
involving a discrete variable representation (DVR) [1] are also of this form [1, 2].
In methods employing a DVR, a real-space grid, on which the wavefunction can
be represented, is defined by means of an orthonormal set of basis functions. In

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses, 29
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this way, the first approach also encompasses grid-based methods such as those
of Feit and Fleck [3, 4] and Kosloff [5, 6]. We will generally refer to meth-
ods employing time-independent basis functions as numerically exact grid-based
methods.

In the other approach, increased flexibility in the description of the wavefunction
is obtained by allowing both coefficients and basis functions to be time-dependent.
In this way, the numerical intractability of grid-based methods for high-dimensional
systems can be somewhat alleviated. Several methods in this group can be viewed as
extensions of Heller’s semi-classical Gaussian wavepackets [7–10]. Such methods
include the quasi-classical Full Multiple Spawning (FMS) [11–14], Ab Initio Mul-
tiple Spawning (AIMS) [15, 16], and Coupled Coherent States [17–20] as well as
the full-quantum method of variational Multi-Configuration Gaussian wavepacket
(vMCG) [21, 22]. vMCG is a derivative of Multi-Configuration Time-Dependent
Hartree (MCTDH) [23–25]. Unlike vMCG, MCTDH uses general, not parameter-
ized, time-dependent basis functions.

In this chapter, we will give a short introduction to the formalism of MCTDH and
that of the Vibronic Coupling Hamiltonian (VCHAM) which were used in conjunc-
tion for the simulations presented in Chap. 7. We will show how complex Gaussian
functions can be used in the MCTDH formalism leading to the vMCG method. This
provides a natural transition to a presentation of the formalism and applicational
aspects of the related Gaussian wavepacket methods of FMS and AIMS. AIMS was
used for the simulations presented in Chap. 8.

4.1 Multi-Configuration Time-Dependent Hartree

4.1.1 The MCTDH Equations of Motion

In multi-state MCTDH, the total nuclear wavefunction is written as a sum over Ne

electronic states according to [26]

�(Q, t) =
Ne∑

v

�(v)(Q, t) (4.4)

Here, �(v)(Q, t) is the nuclear wavefunction of electronic state v, and Q denotes
general nuclear coordinates. The diabatic representation is usually employed for
the electronic states to avoid having to deal with the possibly diverging derivative
coupling terms present in the adiabatic representation (see Sect. 1.2). The ansatz for
the nuclear wavefunction takes on the following form [23, 24, 27]

http://dx.doi.org/10.1007/978-3-319-00386-3_7
http://dx.doi.org/10.1007/978-3-319-00386-3_8
http://dx.doi.org/10.1007/978-3-319-00386-3_8_1
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�(v)(Q, t) =
n(v)∑

j

C (v)
j (t)φ(v)

j (Q, t)

=
n(v)

1∑

j1

· · ·
n(v)

N∑

jN

C (v)
j1··· jN

(t)
N∏

κ

ϕ
(v)
jκ

(Qκ, t) (4.5)

Thus, the wavefunction is given as a sum of Hartree products or configurations
φ

(v)
j (Q, t) giving rise to the name of the method. The Hartree products each carry a

complex time-dependent coefficient C (v)
j1··· jN

(t) in the wavefunction expansion, and

they are themselves products of N single-particle functions ϕ(v)
jκ

(Qκ, t). To ease
notation, the composite index j = j1 · · · jN has been introduced. The equations of
motion for the time-dependent coefficients and single-particle functions are obtained
by use of the Dirac-Frenkel variational principle [28, p. 253]

〈δ�|Ĥ − i (∂/∂t) |�〉 = 0 (4.6)

The reader is referred to Ref. [24] for a full derivation of the equations of motion.
For the coefficients, the equation reads

Ċ = −iHC (4.7)

where we have introduced the vector of coefficients C and its time-derivative Ċ
as well as the Hamiltonian matrix H represented in the basis of Hartree products.
Explicitly for the coefficients of a given electronic state, the equation reads

Ċ(v) = −i
Ne∑

w

H(v,w)C(w) (4.8)

The working equation for the single-particle functions is slightly more involved

iϕ̇(v)
κ = (1 − P(v)

κ )
(
ρ(v)
κ

)−1
Ne∑

w

H̃(v,w)
κ ϕ(w)

κ (4.9)

Here, the vector of single-particle functions ϕ
(v)
κ for degree of freedom κ and elec-

tronic state v and its time-derivative ϕ̇(v)
κ have been introduced. We have also intro-

duced three other objects: the projection operator onto the space of single-particle
functions for the κth degree of freedom P(v)

κ as well as the density matrix ρ
(v)
κ and

the mean-field H̃(v,w)
κ for this degree of freedom. The latter two have elements given

according to
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ρ
(v)
κ, jκkκ

= 〈�(v)
jκ

|�(w)
kκ

〉δvw (4.10)

H̃ (v,w)
κ, jκkκ

= 〈�(v)
jκ

|Ĥ (v,w)|�(w)
kκ

〉 (4.11)

where we have introduced the single-hole functions �
(v)
jκ

. The single-hole function

�
(v)
jκ

is similar to the linear combination of Hartree products of the wavefunction
ansatz in Eq. (4.5) except that it does not contain the single-particle functions for
the κth degree of freedom, and the κth index in the coefficients is set to j . The
mean-fields are thus operators on the κth degree of freedom.

4.1.2 Applicational Aspects of MCTDH

In MCTDH, the completely general and variationally optimized single-particle func-
tions have to be represented in a time-independent basis which is normally achieved
by the use of a DVR. For a given degree of freedom, such a DVR consists of a num-
ber of grid points. When the number of single-particle functions for a given degree
of freedom equals the number of grid points, the single-particle function basis is
complete. In this case, the single-particle functions become time-independent as the
projection operator in Eq. (4.9) equals the identity, and one is left with a numerically
exact standard grid-based wavepacket propagation approach.

The MCTDH equations of motion in principle involve N - and (N−1)-dimensional
integrals in the Hamiltonian and mean-field matrix elements respectively. Evaluation
of such integrals severely limits the applicability of MCTDH. Therefore, the Hamil-
tonian is usually restricted to a sum of products of functions only operating on one
degree of freedom

Ĥ =
∑

j

c j

N∏

κ

ĥ jκ (4.12)

Using this product representation of the Hamiltonian, only one-dimensional integrals
have to be evaluated. Another option is to use a time-dependent DVR with corrections,
the so-called correlation DVR, but this approach will not be discussed further, and
the reader is referred to Refs. [29] and [30] for further details.

The restriction on the form of the Hamiltonian in Eq. 4.12 implies that one has
to chose an appropriate coordinate system. One choice is rectilinear Cartesian coor-
dinates, however, these are often not the most chemically and physically intuitive
set of coordinates. In Cartesian coordinates, the kinetic energy operator is diagonal
in the nuclear degrees of freedom and, thus, of the form of Eq. 4.12. However, a
representation of the potential energy operator which also conforms to the product
form is needed. This can be obtained by use of the Potfit program, but for higher
dimensional systems this can be a restrictive step [31–33]. Another choice of coordi-
nate system, which will be explored in Sect. 4.3, is rectilinear dimensionless normal
coordinates where the kinetic energy operator is also diagonal. These coordinates
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are employed in the VCHAM in which the potential is given by a product form as a
Taylor series expansion [34–36]. Recently, the prospect of using general curvilinear
polyspherical coordinates [37, 38] has been introduced [39] along with an automatic
procedure for generating analytical kinetic energy operators of the form given in
Eq. 4.12 [40]. The construction of the kinetic energy operator has previously been
somewhat of a bottleneck as it was approached separately for each specific problem.

4.1.3 Parameterized Basis Functions in MCTDH

The MCTDH method as presented above is very flexible due to the description in
terms of general single-particle functions and is able to treat systems much larger
than grid-based wavepacket methods. To treat even larger and more complex sys-
tems, approximations can be introduced by restricting the single-particle functions of
some degrees of freedom to parameterized basis functions constrained to a Gaussian
functional form [21, 22, 41]. This approximation yields the method termed Gaussian
MCTDH (G-MCTDH), [41] and in the limit that all degrees of freedom use para-
meterized functions the vMCG method [21, 22]. As the wavefunction in the latter
is completely described in terms of parameterized functions, the need for an under-
lying DVR is obviated. We will briefly present vMCG, and the reader is referred
to Refs. [22] and [41] for an in-depth description. In vMCG, the form of the wave-
function is similar to that of MCTDH given in Eq. 4.5, however, the single-particle
functions are now multi-dimensional complex Gaussians

�(v)(R, t) =
n(v)∑

j

C (v)
j (t)φ(v)

j (R; ζ j (t), ξ j (t), η j (t))

=
n(v)∑

j

C (v)
j (t) exp

[
RTζ j (t)R + RTξ j (t) + η j (t)

]
(4.13)

Here, we have changed from the general coordinates Q to Cartesian coordinates
R. As opposed to MCTDH, j is a single, not a composite, index. Application of
the Dirac-Frenkel variational principle again yields the equations of motion. The
working equation for the coefficients reads

SĊ = −i
(
H − i Ṡ

)
C (4.14)

in terms of the vector of coefficients C and its time-derivative Ċ. The elements of
the overlap, right-acting time derivative, and Hamiltonian matrices are given by

S(v,w)
jk = 〈φ(v)

j |φ(w)
k 〉δvw (4.15)
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Ṡ(v,w)
jk =

〈
φ(v)

j

∣∣∣∣
∂

∂t
φ(w)

k

〉
δvw (4.16)

H (v,w)
jk = 〈φ(v)

j |Ĥ (v,w)|φ(w)
k 〉 (4.17)

The equation for the coefficients is very similar to Eq. 4.7 of MCTDH, but unlike the
single-particle functions of MCTDH, the Gaussians of vMCG are not orthogonal.
This introduces the extra complexity of having to deal with the overlap matrix. The
working equation for the Gaussian parameters is more involved

�̇ = −iA−1Y (4.18)

The complex parameters are collected in a single vector � j = {η j , ξ j , ζ j } with
components labeled by λ jα . The index jα refers to the αth parameter of the j th
Gaussian function. The elements of the matrix A and the vector Y are given according
to

A(v)
jα,kβ

= C (v)∗
j C (v)

k

(
S(v,v)
αβ, jk −

[
S(v,v)
α0

(
S(v,v)

)−1
S(v,v)

0β

]

jk

)
(4.19)

Y (v)
jα

=
Ne∑

w

n(w)∑

k

C (v)∗
j C (w)

k

(
H (v,w)
α0, jk −

[
S(v,v)
α0

(
S(v,v)

)−1
H(v,w)

]

jk

)
(4.20)

The indices α and β refer to derivatives with respect to the Gaussian parameters
whereas no derivative is taken when the index is 0

S(v,w)
αβ, jk =

〈
∂φ

(v)
j

∂λ jα

∣∣∣∣∣
∂φ

(w)
k

∂λkβ

〉
δvw (4.21)

S(v,w)
α0, jk =

〈
∂φ

(v)
j

∂λ jα

∣∣∣∣φ
(w)
k

〉
δvw (4.22)

H (v,w)
α0, jk =

〈
∂φ

(v)
j

∂λ jα

∣∣∣∣Ĥ (v,w)

∣∣∣∣φ
(w)
k

〉
(4.23)

As can be gathered from the above equations, the parameters of the Gaussian func-
tions are all coupled to each other as well as the wavefunction coefficients. This is a
result of using the Dirac-Frenkel variational principle and entails that the Gaussian
basis functions follow “quantum” trajectories. Therefore, vMCG can straightfor-
wardly describe quantum effects such as tunneling and electronic state transfer as
opposed to the quasi-classical FMS approach which handles this through the spawn-
ing procedure. FMS will be outlined in the next section.
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4.2 Full Multiple Spawning and Ab Initio Multiple
Spawning

The field of Gaussian wavepacket dynamics was pioneered by Heller in a series of
seminal papers [9, 10, 42] and has inspired many approximate methods of quantum
dynamics since. FMS and AIMS can be viewed as simple extensions of the semi-
classical Gaussian wavepacket prescription of Heller to include quantum mechanical
aspects such as coupling of the Gaussian amplitudes as well as a method to describe
non-adiabatic effects. FMS and AIMS can also be viewed as quasi-classical approx-
imations to the full quantum dynamical vMCG method (although they preceded
vMCG), and the similarities and differences between these methods will be pointed
out in what follows. It should be noted that the formalisms of FMS and AIMS are
identical except for the method used to evaluate the potential energy, and we will refer
to these methods collectively as FMS unless it is necessary to distinguish between
the two. This section is partly based on Ref. VI.

4.2.1 The FMS Equations of Motion

In FMS, the total wavefunction is expanded in a sum of products of electronic and
nuclear wavefunctions similar to the Born representation of Eq. (1.3) but truncated
to Ne electronic states [11–14]

�(r, R, t) =
Ne∑

v

�(v)(R, t)ψ(v)(r; R) (4.24)

Here, �(v)(R, t) is the time-dependent nuclear wavefunction associated with elec-
tronic state v, ψ(v)(r; R) is the electronic wavefunction of state v, and the Cartesian
electronic and nuclear coordinates are referred to as r and R respectively. Usually,
the adiabatic representation is used for the electronic functions in particular when
the method is applied as its on-the-fly counterpart AIMS. However, the methodol-
ogy described below is completely general and can be used with either the diabatic
or adiabatic representation depending on convenience. The nuclear wavefunction is
given as a superposition of multi-dimensional frozen Gaussians so-called trajectory
basis functions (TBFs)

�(v)(R, t) =
n(v)(t)∑

j

C (v)
j (t)φ(v)

j (R; R j (t), P j (t), γ j (t),α) (4.25)

Here, n(v)(t) is the number of TBFs associated with electronic state v, C (v)
j (t) is

the complex amplitude for the j th TBF on electronic state v, and R j (t), P j (t),

http://dx.doi.org/10.1007/978-3-319-00386-3_1
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γ j (t), and α is the center position, momentum, semi-classical phase, and width that
parameterize the given TBF. Each multidimensional TBF is given as a product of
one-dimensional frozen Gaussians over the N nuclear degrees of freedom labeled
by κ

φ
(v)
j (R; R j (t), P j (t), γ j (t),α) = eiγ j (t)

N∏

κ

ϕ
(v)
jκ

(Rκ; R jκ(t), Pjκ(t),ακ) (4.26)

with

ϕ
(v)
jκ

(Rκ;R jκ(t), Pjκ(t),ακ) =
(

2ακ
π

) 1
4

exp
[
−ακ

(
Rκ − R jκ(t)

)2 + iP jκ(t)
(
Rκ − R jκ(t)

)]
(4.27)

The index jκ refers to the κth degree of freedom of the j th TBF. In a harmonic
potential, the expectation values of the position and momentum of a Gaussian
wavepacket, e.g. a TBF, will undergo classical equations of motion. This led Heller to
the following classical equations of motion for the position and momenta parameters
[9, 42]

∂R jκ

∂t
= Pjκ

mκ
(4.28)

∂Pjκ

∂t
= −∂V (R)

∂Rκ

∣∣∣∣
R j (t)

(4.29)

where mκ is the mass associated with nuclear degree of freedom κ and V (R) is
the potential energy experienced by the nuclei. The phase can be chosen to evolve
according to a semi-classical prescription [11, 12, 42]

∂γ j

∂t
= −V (R j (t)) +

N∑

κ

((
Pjκ(t)

)2 − 2ακ
)

2mκ
(4.30)

Without loss of generality, γ j (t) can be set equal to zero thereby effectively absorbing

the oscillating phase into the complex coefficients C (v)
j (t). Inserting the anzats for the

wavefunction from Eq. (4.24) into the time-dependent Schrödinger equation yields
the equation of motion for the time-dependent complex coefficients

SĊ = −i
(
H − i Ṡ

)
C (4.31)

in terms of the vector of coefficients C and its time-derivative Ċ. This equation is
identical to Eq. (4.14) of vMCG with the same definitions for the matrix elements as
given in Eqs. (4.15)–(4.17).
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As observed, the formulation of FMS is closely related to that of vMCG. In fact,
the TBFs of FMS are identical to the Gaussian functions of vMCG except for a
normalization factor, if one makes the identifications

ζ jκ = −ακ (4.32)

ξ jκ = 2ακR jκ + iP jκ (4.33)

η j = iγ j −
N∑

κ

(
ακR2

jκ + iP jκ R jκ

)
(4.34)

The first equation entails freezing the width parameter of the Gaussian functions in
vMCG similar to FMS. As opposed to vMCG, the parameters of the TBFs in FMS are
uncoupled from those of the other TBFs and from the wavefunction coefficients. In
FMS, each TBF follows a classical trajectory as opposed to the “quantum” trajectories
of vMCG. The propagation of the coupled coefficients sets FMS (and vMCG) aside
from semi-classical frozen Gaussian wavepacket methods such as those of Heller
[42]. What sets FMS aside from both vMCG and the semi-classical methods is the
adaptability of the basis set size, and, thus, the size of the vectors and matrices of
Eq. (4.31), through the spawning procedure.

4.2.2 The Spawning Approach to an Adaptive Basis Set

The spawning procedure is a general method for adapting the size of the nuclear
basis set to describe inherently quantum mechanical effects and has been applied to
tunneling [43] as well as photoexcitation and non-adiabatic transitions [11, 12, 44].
We will present the spawning method in the context of electronic state transfer as
this was employed in the calculations presented in Chap. 8.

In the spawning approach, the effectiveness of the basis set is constantly moni-
tored, and new basis functions are spawned if needed. This is achieved by calculating
an effective coupling between the electronic states included in the simulation at the
center of the TBFs at each timestep [16, 45]. In an adiabatic electronic basis, this
effective coupling is obtained by evaluating

�
(v,w)
eff (R) =

∣∣∣d(v,w)(R)

∣∣∣ (4.35)

whereas in a diabatic basis, the effective coupling is given according to

W (v,w)
eff (R) =

∣∣∣∣∣
W (v,w)(R)

W (w,w)(R) − W (v,v)(R)

∣∣∣∣∣ (4.36)

By calculating the effective coupling, one is essentially evaluating the probability
of population transfer had TBFs been present on the other states. If the effective

http://dx.doi.org/10.1007/978-3-319-00386-3_8
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Fig. 4.1 Schematic showing the steps of the spawning procedure as employed in FMS and AIMS

coupling is above a certain pre-specified threshold, a new TBF, the child, is therefore
spawned on the state to which a given TBF, the parent, is coupled. What remains is to
position the child TBF in phase space. We will in the following restrict the discussion
to an adiabatic electronic basis.

The first time at which the effective coupling crosses the threshold is referred
to as tspawn, cf. Fig. 4.1. At this timestep, the wavepacket is frozen and a copy of
the parent is propagated forward in time into the spawning region until the effective
coupling has peaked. The time at which the coupling peaks is referred to as tmax.
With this knowledge at hand, three options have been used for placing the child TBF:
p-jump, standard, and optimal spawning [45]. In the first approach, the child TBF is
placed such that Rchild matches Rparent at tmax, and Pchild is scaled along the direction
of the non-adiabatic coupling vector d to ensure energy conservation (in the long
time limit) very similar to surface hopping [46]. However, situations where it is not
possible to match the energy of the child to that of the parent by this approach can
be encountered. This deficiency is amended in standard spawning where Rchild is
adjusted along the energy gradient of the child electronic state until the energy of
the child matches that of the parent. In the optimal spawning approach, the child
basis function is placed such as to maximize population transfer thereby minimizing
the number of TBFs needed to describe non-adiabatic transitions. This is achieved
by maximizing the norm of the electronic off-diagonal element of the Hamiltonian
matrix coupling the parent and the child with Rchild and Pchild as parameters while
constraining the energy of the child to match that of the parent.

When the child position and momentum have been determined, the child is back-
propagated from tmax to tspawn and added to the wavepacket by setting its coefficient
Cchild(tspawn) = 0. It should be clear that at this point the child as a basis function
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only affords the opportunity to describe population transfer. The spawning procedure
does not govern population transfer—population transfer is governed by the time-
dependent Schrödinger equation for the coefficients given in Eq. (4.31).

4.2.3 Applicational Aspects of FMS and AIMS

A key aspect of Gaussian wavepacket dynamics is that the Gaussian functions are
localized in space. Due to this property, only local information of the potential energy
surfaces around the centers of the TBFs or centroids of overlapping TBFs is needed.
Usually, the potential energy surfaces are expanded in a Taylor series according to

V (R) = V (R0) + ∂V (R)

∂R

∣∣∣∣
R0

· (R − R0)

+ 1

2
(R − R0)

T · ∂
2V (R)

∂R2

∣∣∣∣
R0

· (R − R0) + · · · (4.37)

Truncating the series at second-order leads to the local harmonic approximation—a
choice which is motivated by Heller’s observation that the center of a Gaussian
wavepacket follows a classical trajectory in a harmonic potential [42]. With an
approximation to the potential in the form of Eq. (4.37), all matrix elements required
for FMS as well as vMCG have analytical expressions in terms of Gaussian moments.
These features of Gaussian wavepacket dynamics allow for use in direct dynamics
methods [47] such as Direct Dynamics vMCG (DD-vMCG) [33, 48–50] and AIMS.
In direct dynamics methods, the potential energy surfaces are calculated on-the-fly,
i.e. simultaneously with the solution of the equations for the nuclear wavefunction.
One advantage of FMS over vMCG is the direct applicability of the former in the
adiabatic representation whereby the output from electronic structure codes can be
used directly. In contrast, vMCG is only applicable in the diabatic representation
necessitating that the adiabatic potential energy surfaces obtained from electronic
structure calculations are transformed to the diabatic representation.

In nuclear dynamics simulations, the electronic structure calculations can be the
limiting factor in terms of computational effort. As a consequence, the expansion in
Eq. (4.37) is often truncated at zeroth-order in FMS leading to the following matrix
elements of the potential energy operator

〈φ(v)
j |V̂ |φ(v)

k 〉 ≈ S(v,v)
jk V (Rc) (4.38)

Here, Rc is the centroid of the two TBFs given by Rc = (R j + Rk)/2 which for
j = k reduces to the center of the TBF. In the case of strongly coupled TBFs on
the same electronic state, i.e. highly overlapping, this approximation can lead to
detrimental results as observed in the example in Fig. 4.2. However, the independent
first generation (IFG) approximation is usually employed [51]. In IFG, the initial
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Fig. 4.2 Autocorrelation function for a wavepacket in a Morse potential. FMS results using a zeroth-
(blue), first- (pink), and second-order (purple) Taylor expansion of the potential is compared to the
exact result from an MCTDH calculation (◦). The FMS calculations use 24 TBFs distributed on
the three lowest classical orbits in phase space propagated using a fourth-order McLachlan Atela
integrator for the classical parameters combined with a fourth-order Magnus expansion for the
coefficients. A timestep of 5.0 au was used

TBFs are uncoupled and only couple to the TBFs that they spawn onto other electronic
states whereby this problem is often circumvented.

Figure 4.2 also illustrates how FMS can be converged to the exact numerical result
even for non-harmonic potentials. As opposed to the case for MCTDH where the
single-particle functions become time-independent in the complete basis set limit
ensuring the convergence to the exact numerical result obtained from grid-based
methods, this is not the case for FMS. Consequently, a basis set that is complete at
one time is not necessarily complete at a later time, and convergence to the exact
numerical result is, thus, only obtained in the limit of a continuously complete basis
set. Although this limit can somewhat easily be reached in low-dimensional bound
systems, a way of approaching this limit for general high-dimensional cases is not
straightforward. Reaching convergence would require an at times significantly over-
complete basis set to ensure completeness at all subsequent times.

Many different integrators have been implemented into FMS to integrate the
classical parameters and the coefficient vector. In one scheme, the classical variables
are integrated from t → t + δt using a Velocity-Verlet integrator [52]

R jκ(t + δt) = R jκ(t) + Pjκ(t)

mκ
δt − 1

2mκ

(
∂V (R)

∂Rκ

∣∣∣∣
R j (t)

)
δt2 (4.39)
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Pjκ (t + δt) = Pjκ(t) − 1

2

(
∂V (R)

∂Rκ

∣∣∣∣
R j (t)

+ ∂V (R)

∂Rκ

∣∣∣∣
R j (t+δt)

)
δt (4.40)

and the phase is integrated (if employed) using a simple trapezoidal rule [53]

γ j (t + δt) = γ j (t) + 1

2

(
∂γ j

∂t

∣∣∣∣
t
+ ∂γ j

∂t

∣∣∣∣
t+δt

)
δt (4.41)

To integrate the coefficients, the differential equation for the complex coefficients is
rewritten to

Ċ = −iS−1 (
H − i Ṡ

)
C = B(t)C (4.42)

The classical timestep is split into two, and for each substep, the integration of
the coefficients is divided into 2n second-order Runge-Kutta integration steps. For
k = 0, . . . , n − 1, the following equations [53]

k1,k = δt

2n
B(t)C

(
t + k

2n
δt

)
(4.43)

k2,k = δt

2n
B(t)

(
C

(
t + k

2n
δt

)
+ 1

2
k1,k

)
(4.44)

C
(

t + k + 1

2n
δt

)
= C

(
t + k

2n
δt

)
+ k2,k (4.45)

are used to propagate the coefficients from t → t + δt/2. In a similar manner, the
equations

k1,k+n = δt

2n
B(t + δt)C

(
t + k + n

2n
δt

)
(4.46)

k2,k+n = δt

2n
B(t + δt)

(
C

(
t + k + n

2n
δt

)
+ 1

2
k1,k+n

)
(4.47)

C
(

t + k + n + 1

2n
δt

)
= C

(
t + k + n

2n
δt

)
+ k2,k+n (4.48)

are used for propagating the coefficients from t + δt/2 → t + δt . The value of n is
increased until convergence in the norm of the wavefunction is reached.

In another scheme, the classical parameters are propagated from t → t + δt/2
and then subsequently from t + δt/2 → t + δt using a fourth-order McLachlan
Atela integrator [54]. The integration is performed for k = 1, . . . , 4 according to the
recursion relations

P(k)
jκ

= P(k−1)
jκ

− b(k) δt

2

∂V (R)

∂Rκ

∣∣∣∣
R(k−1)

jκ

(4.49)
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R(k)
jκ

= R(k−1)
jκ

+ a(k) δt

2

P(k)
jκ

mκ
(4.50)

with the parameters for a(k) and b(k) from the si4.b integrator in Ref. [55]. In this
way, B(t) can be explicitly constructed at times t , t + δt/2, and t + δt and used
for the integration of the coefficients. Using the Magnus expansion [56], the formal
solution to Eq. (4.42) for the coefficients is

C(t + δt) = exp [�(t + δt, t)] C(t) (4.51)

with

�(t + δt, t) =
∞∑

k

�k(t + δt, t) (4.52)

Each term �k in the infinite sum is a multiple integral involving linear combinations
of nested commutators of B(t). Thus, the formal solution requires the complete
knowledge of the time-dependence of B(t) as well as the evaluation of an infinite
number of integrals in the exponential. In applications, the series is truncated to
some appropriate order. In one approximation scheme, the integrals in the truncated
series are furthermore approximated by quadratures using derivatives of B(t) around
t1/2 = t +δt/2 [57]. This leads to the following solutions for the Magnus propagator
of order 2 and 4 in the timestep respectively

exp [�(t + δt, t)] ≈ exp
[
δtb0 + O(δt3)

]
(4.53)

exp [�(t + δt, t)] ≈ exp

[
δtb0 + δt3

12
(b2 − [b0, b1]) + O(δt5)

]
(4.54)

where bk is the kth derivative of B(t) at time t = t1/2. These derivatives are evaluated
by finite differences

b0 = B(t + δt/2) ≈ B(t) + B(t + δt)

2
(4.55)

b1 = B(t + δt) − B(t)

δt
(4.56)

b2 = B(t + δt) − 2B(t + δt/2) + B(t)

(δt/2)2 (4.57)

The fourth-order Magnus propagator is combined with the fourth-order McLachlan
Atela integrator. The second-order Magnus propagator can be combined with the
Velocity-Verlet integrator for the classical parameters either by approximating
B(t + δt/2) as indicated in Eq. (4.55) or dividing the classical timestep into two
and explicitly evaluating B(t + δt/2).
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4.3 The Vibronic Coupling Hamiltonian

As mentioned in Sect. 4.1.2, one has to chose an appropriate coordinate system to
ensure that the Hamiltonian for MCTDH is in the product form of Eq. (4.12). This can
be achieved by use of dimensionless, i.e. mass-frequency scaled, normal coordinates
as employed for the VCHAM [34–36]. The VCHAM has been used in conjunction
with MCTDH several times [58–65]. In the vibronic coupling scheme, the Hamil-
tonian is represented in a basis of diabatic electronic states as an expansion around
a point of interest Q0 normally chosen as the ground state equilibrium geometry. A
system of Ne electronic states is described by an Ne × Ne matrix which is decom-
posed into a zeroth-order Hamiltonian H0 = V0+T and a diabatic potential coupling
matrix W

H = V0 + T + W =
N∑

κ

ωκ

2

(
Q2
κ − ∂2

∂Q2
κ

)
I + W (4.58)

Here, ωκ is the ground state normal mode frequency, and I is the Ne × Ne identity
matrix. The electronic on- and off-diagonal terms of W are expanded in Taylor series
according to

W (v,v) = E (v) +
N∑

κ

β(v)
κ Qκ + 1

2

N∑

κ

N∑

κ′
γ

(v)

κκ′ QκQκ′ + · · · (4.59)

W (v,w) =
N∑

κ

λ(v,w)
κ Qκ + 1

2

N∑

κ

N∑

κ′
μ

(v,w)

κκ′ QκQκ′ + · · · (4.60)

The coefficients β(v)
κ , μ(v,w)

κκ′ etc. are called vibronic coupling constants. As the dia-
batic potential energy surfaces are smooth functions of the nuclear coordinates, even
a low-order Taylor expansion should give a reasonable representation of the system
at hand. In cases of large anharmonicity, it can beneficial to employ a Morse potential
as the zeroth-order term instead of the harmonic term in Eq. (4.58)

V (v)
κ (Qκ) = D(v)

κ

(
exp

[
−α(v)

κ (Qκ − Q(v)
κ0 )

]
− 1

)2
(4.61)

Many of the coupling constants vanish on grounds of point group symmetry. As
an example, take the coupling constant μ(v,w)

κκ′ . Let �v and �w be the irreducible
representations of the electronic states v and w in the pertinent point group, and,
similarly, let �κ and �κ′ be those of the normal coordinates Qκ and Qκ′ . The coupling
constant can only be non-vanishing if the following is fulfilled

�v ⊗ �κ ⊗ �κ′ ⊗ �w ⊇ �A (4.62)

where �A is the totally symmetric, i.e. identity representation, of the point group.
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4.3.1 Applicational Aspects of the VCHAM

The VCHAM provides a convenient representation of the Hamiltonian to be used in
conjunction with MCTDH. However, to be employed, the coupling constants have to
be determined in some manner. As the potential energy surfaces obtained from elec-
tronic structure calculations are in the adiabatic representation they cannot directly
be employed as the transformation from an adiabatic to a diabatic representation is
not unique. On the other hand, the transformation from the diabatic to the adiabatic
representation is unique and is achieved by diagonalization of the full diabatic poten-
tial matrix, i.e. V0 +W. This matrix is in general non-diagonal. Thus, with a suitable
guess for the coupling constants, the potential matrix can be diagonalized, and the
obtained adiabatic potential energy surfaces can be compared to those obtained from
electronic structure calculations. This procedure gives a method of fitting the cou-
pling constants. The general procedure to obtain the VCHAM can be given in four
steps

(1) Calculate harmonic normal mode frequencies and vectors and transform from
mass-weighted normal coordinates to dimensionless coordinates by Qκ →
Qκ/

√
ωκ

(2) Use the transformed normal mode vectors to create displaced geometries and
calculate the energies of the desired electronic states at these geometries

(3) Create a database containing the geometries and energies
(4) Fit the coupling constants by comparing the energies at the displaced geometries

in the database to those obtained by diagonalization of the diabatic potential
matrix from the VCHAM

From the procedure detailed above, it could appear that one has to calculate the
electronic energies on a full-dimensional grid of points. This would be a severe
restriction when going beyond two or three dimensions. Instead, energies are cal-
culated along single-mode displacements to fit the on-diagonal constants, i.e. those
for which κ = κ′ = · · · , and along mode-mode diagonals to fit the off-diagonal
constants, i.e. those for which κ 
= κ′ 
= · · · . If terms of higher than second order are
included in the Taylor series of Eqs. 4.59 and 4.60, this procedure necessitates that
these are restricted. For the third order terms, the following restrictions are made

1

6

N∑

κ

N∑

κ′

N∑

κ′′
ι
(v)

κκ′κ′′ QκQκ′ Qκ′′ → 1

6

N∑

κ

ι(v)
κκ Q3

κ + 1

2

N∑

κ 
=κ′
ι
(v)

κκ′ QκQ2
κ′ (4.63)

1

6

N∑

κ

N∑

κ′

N∑

κ′′
η

(v,w)

κκ′κ′′ QκQκ′ Qκ′′ → 1

6

N∑

κ

η(v,w)
κκ Q3

κ + 1

2

N∑

κ 
=κ′
η

(v,w)

κκ′ QκQ2
κ′ (4.64)

If these restrictions were not employed, the constants ι(v)

κκ′κ′′ and η(v,w)

κκ′κ′′ would in
some cases be underdetermined.
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Fitting the coupling constants is a general non-linear optimization problem, and,
whence, suffers from general problems in terms of converging to the global minimum.
Furthermore, since the coupling constants are highly interdependent, one is only
certain of obtaining a set of constants but not necessarily the “correct” set of constants
to describe the system. To alleviate some of these difficulties, the low-order constants
are fitted first and then used as a guess for an optimization including higher-order
terms. This ensures to some extent that the low-order constants carry the most weight
in the fit. Furthermore, the data points can be exponentially weighted by energy to
favor a good fit to the important low-energy regions of the potential energy surfaces.
Nonetheless, even for a modest number of modes, unacceptable un-balanced fits are
often obtained. Examples of this are first-order inter-state or third-order coupling
constants giving rise to potential energy surfaces with unphysically low barriers to
dissociation in one specific mode while all order modes are fitted well. In this case,
it can be necessary to restrict, fix, or manually adjust parameters to achieve a more
balanced fit.

The entire fitting procedure can be carried out using the VCHFIT program which
is distributed with the Heidelberg MCTDH code [66]. VCHFIT takes advantage
of the symmetry restraints of Eq. (4.62) and furthermore includes several different
optimization routines from simplex and Powell’s conjugate direction methods to a
genetic algorithm [67–69]. The program was inhere employed in a locally modified
version.

References

1. J.C. Light, I.P. Hamilton, J.P. Vill, J. Chem. Phys. 82, 1400–1409 (1985)
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Chapter 5
Time-Resolved Photoelectron Spectra

Through the time evolution of the wavefunction, dynamics simulations provide
insight into the system under investigation. Often, it can be beneficial to consider
partially integrated quantities such as electronic populations or coordinate expecta-
tion values to map out the dynamics. However, if we are interested in comparing
simulations to experiment, it can be necessary to calculate the experimental observ-
able from the dynamics simulations to allow for a direct comparison between theory
and experiment.

In this chapter, we will describe two different methods of calculating time-resolved
photo-electron spectra. Such calculations in principle involve propagation of the
wavefunction in the presence of two fields representing the pump and probe pulses.
In the first method, the initial excitation as well as the subsequent ionization are
assumed to be impulsive, i.e. the duration of the pulses is taken to be shorter than
that of nuclear dynamics. As the pulses are furthermore assumed non-overlapping,
the ionization of the pump-induced wavepacket is treated by first order perturbation
theory. In the second method, the two fields are explicitly included in the Hamiltonian
of the system, however, the ionization step is approximated as the wavefunction of the
photoelectron is not considered explicitly, and a unit transition strength is assumed.

5.1 Perturbative Trajectory-Based Calculation

The method presented inhere uses first order perturbation theory to calculate the
photoelectron spectrum. As its basis, the method uses results obtained from trajectory-
based dynamics such as Full Multiple Spawning (FMS) and is performed subsequent
to the dynamics calculation. It is assumed that a wavepacket, approximated by a num-
ber of trajectories, has been created in a neutral excited state by the pump pulse, and
that there is no overlap in time between the pump and probe pulses. I.e., the probe
pulse strictly follows that of the pump. We will show how the method reduces to
calculating the spectrum resulting from ionization of the pump-induced wavepacket

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses, 47
DOI: 10.1007/978-3-319-00386-3_5, © Springer International Publishing Switzerland 2013
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at a specific time t = �t following the pump pulse. Thus, the method is somewhat
in the spirit of the Bersohn-Zewail model [1, 2] and follows the methods of Meier,
Engel, and Møller [3–6].

The photoelectron spectrum can be calculated from the probability density of
the electronic ionization continua long after the probe pulse has decayed, i.e. from
the overlap between the state |�(t)〉 for t → ∞ with the electronic ionization
continua [7, 8]

σ(Ek) =
∑

w

|〈�(t → ∞)|ψ(w)(Ek)〉|2 (5.1)

Here, w labels the ionization continua, and Ek is the kinetic energy of the ejected
photoelectron. The final electronic state w is a combination of an (n − 1)-electron
cationic state and a continuum photoelectron. In the sudden and strong orthogonality
approximations, the cation and photoelectron can be assumed independent, and the
final electronic state reduces to a product of that of the cation and photoelectron
[9–11]. In this case, the spectrum is given by

σ(Ek) =
∑

w

∑

f

|〈�(t → ∞)|ψ(el)
f (Ek)ψ

(w)〉|2 (5.2)

where f labels the angular momentum of the photoelectron. In what follows, we will
consider a single component corresponding to ionization to the cationic state w with
the ejection of a photoelectron with angular momentum f . To calculate |�(t → ∞)〉,
the initial state is taken to be a wavepacket in state v at a time after the action of the
pump pulse but before the action of the probe pulse. We will in the end sum over all
initial electronic states v to include the full wavepacket created by the pump pulse.
Following first-order perturbation theory, the component of the initial state ending
up in the final state w due to the perturbation of the probe field is [6]

|�(t → ∞)〉 = −i
∫ ∞

−∞
ei(Ĥ (w)+Ek )t ĤI e−i Ĥ (v)t |�(v)(t)〉 dt

= −i
∫ ∞

−∞
ei(Ĥ (w)+Ek )t ĤI e−i Ĥ (v)t |ψ(v)〉|�(v)(t)〉 dt (5.3)

where the perturbation is given by the light-matter interaction in the dipole approxi-
mation

ĤI = −μ̂ · E(t) (5.4)

Employing the rotating wave approximation, we represent the probe pulse by the
field

E(t) = 1

2
ε(t) exp[−iωt] = 1

2
ε0 exp[−4 ln(2)(t − �t)2/τ2] exp[−iωt] (5.5)
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The field consists of a carrier wave of frequency ω multiplied by a Gaussian field
envelope ε(t). The field envelope is centered at the pump-probe delay �t with a
full width at half maximum (FWHM) of τ and an amplitude of ε0. Using these
expressions, the overlap in Eq. (5.2) can be given as

〈ψ(el)
f (Ek)ψ

(w)|�(t → ∞)〉 =
i

2

∫ ∞

−∞
ei(V̂ (w)+T̂n+Ek )t 〈ψ(el)

f (Ek)ψ
(w)|μ̂|ψ(v)〉ε(t)e−iωt e−i(V̂ (v)+T̂n)t |�(v)(t)〉 dt

(5.6)

where V̂ (v) is the potential energy operator for state v, and T̂n is the nuclear kinetic
energy operator. Due to the approximations for the electronic state of the ionization
continuum, the energies of the cationic state and the photoelectron are additive. The
electronic matrix element of the dipole operator can explicitly be written as

μ(w,v)
f (Ek) ≡ 〈ψ(el)

f (Ek)ψ
(w)|μ̂|ψ(v)〉 = 〈ψ(el)

f (Ek)|μ̂|ψ(w,v)
D 〉 (5.7)

with the so-called Dyson-orbital given by [12–15]

ψ
(w,v)
D (r1) = 〈r1|ψ(w,v)

D 〉 = 〈ψ(w)|〈r1|ψ(v)〉
= √

n
∫

r2

· · ·
∫

rn

ψ(w)(r2, . . . , rn)ψ(v)(r1, . . . , rn) dr2 · · · drn (5.8)

Notice that the integration is over the coordinates of all n electrons except for those
of the ejected photoelectron. The Dyson orbital is a one-electron ionization-channel
specific orbital. Using a Coulomb radial function for the continuum electron, the
electronic matrix element over the dipole operator in Eq. (5.7) can be calculated
numerically using ezDyson [16] when the Dyson orbital is available from electronic
structure calculations. In this calculation, rotational averaging over the angle between
the transition dipole moment and the electric field polarization is carried out.

To proceed with the evaluation of the integral in Eq. (5.6), we make the critical
approximation that the potential energy, kinetic energy and dipole moment operators
commute. Hereby, we can rewrite the integral to

i

2
μ

(w,v)
f (Ek)

∫ ∞

−∞
ε(t)e−i(V̂ (v)−V̂ (w)−Ek+ω)t |�(v)(t)〉 dt =

i

2

∑

j

μ
(w,v)
f (Ek)

∫ ∞

−∞
ε(t)e−i(V̂ (v)−V̂ (w)−Ek+ω)t C (v)

j (t)|φ(v)
j (t)〉 dt (5.9)

In the second line, we have explicitly written the vibrational state as a sum over
coherent states [17] following the prescription of FMS. In the nuclear coordinate
representation, this becomes
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i

2

∑

j

μ
(w,v)
f (Ek; R)×

∫ ∞

−∞
ε(t)e−i(V (v)(R)−V (w)(R)−Ek+ω)t C (v)

j (t)φ(v)
j (R, t) dt (5.10)

We have indicated the parametric dependence on the nuclear coordinates of the tran-
sition dipole matrix element which results from the parametric dependence on the
nuclear coordinates of the electronic wavefunctions. To evaluate the expression in
Eq. (5.2), we have to square the expression above and integrate over nuclear coor-
dinates. As the trajectory basis function (TBF) φ(v)

j (R, t) is highly localized around
R = R j (t), the coordinate integral can be approximated by evaluating the nuclear
coordinate dependent functions in R j (t). If we in addition assume impulsive ioniza-
tion, i.e. that the field envelope ε(t) is of much shorter duration than the timescale
for nuclear motion, this reduces to evaluating the functions in R = R j (�t) as the
field envelope is centered at t = �t . Thereby, we can also evaluate the coefficient
and TBF in t = �t and move them outside the integral over t . Due to the localized
nature of the TBFs, cross-terms between different TBFs in the absolute square, i.e.
terms involving φ(v)∗

k φ
(v)
j with k 	= j , are also omitted as the overlap between φ(v)

k

and φ(v)
j is assumed negligible. Performing these operations, one component of the

spectrum is given by

1

4

∑

j

|μ(w,v)
f (Ek; R j (�t))|2|C (v)

j (�t)|2
∣∣∣∣
∫ ∞

−∞
ε(t) exp [−i ω̃t] dt

∣∣∣∣
2

(5.11)

where we have defined the shifted frequency

ω̃ = V (v)(R j (�t)) − V (w)(R j (�t)) − Ek + ω

= ω − �E (v,w)(R j (�t)) − Ek (5.12)

The integral over the Gaussian field envelope can be solved analytically by identifying
it as a Fourier transform in the shifted frequency

F(ω, Ek; R j (�t)) =
∣∣∣∣
∫ ∞

−∞
ε0 exp

[
−4 ln(2)(t − �t)2/τ2

]
exp [−i ω̃t] dt

∣∣∣∣
2

=
∣∣∣∣ε0

τ

2

√
π

ln(2)
exp [−i ω̃�t] exp

[
−τ2ω̃2/(16 ln(2))

]∣∣∣∣
2

= πε2
0τ

2

4 ln(2)
exp

[
−τ2ω̃2/(8 ln(2))

]
(5.13)

With this at hand, the total spectrum at a specific time-delay between pump and probe
pulses �t is given by
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σ(Ek,�t) ∝
∑

v,w

∑

f

∑

j

|μ(w,v)
f (Ek; R j (�t))|2|C (v)

j (�t)|2F(ω, Ek; R j (�t)) (5.14)

Here, we have summed over v to include all electronic components of the initial
wavepacket. The formula for the spectrum in Eq. (5.14) consists of a product of the
absolute square of the electronic transition dipole moment, a basis function popu-
lation, and the so-called window function. The window function is peaked around
ω = �E (v,w)(R)+ Ek , i.e. when the probe frequency matches the sum of the energy
difference between the cationic and the neutral state and the kinetic energy of the
photoelectron. The energetic width of the window is determined by the FWHM of
the probe pulse τ—a shorter pulse leads to a wider window in energy as expected
from the time-bandwidth product. As derived, the spectrum is discrete in the pump-
probe delay �t . To approximately include the experimental time resolution given
by the cross-correlation (XC) between the pump and probe pulses, the spectrum is
convoluted by a Gaussian function in the time-delay �t

σ(Ek,�t) → exp[−4 ln(2)�t2/τ2
xc] ⊗ σ(Ek,�t) (5.15)

Although a high-level correlated electronic structure method is used in the simulation
which is the basis for the calculation of the time-resolved photoelectron spectrum,
inevitably some discrepancy between the energies obtained from calculation and
those from experiment is to be expected. In order to be able to compare calculated
spectra to those from experiment, a correction can employed for �E (v,w) to match
to the experimental value of the photoelectron kinetic energy at the Franck-Condon
point. The correction is achieved by �E (v,w) → �E (v,w) − �(v,w) with �(v,w)

given by

�(v,w) =
(
�E (v,0)

exp − �E (v,0)
calc

)
+

(
IP(w,0)

calc − IP(w,0)
exp

)
(5.16)

Here, �E (v,0) and IP(w,0) are the vertical excitation energies and ionization poten-
tials at the Franck-Condon geometry, and the subscripts refer to experimental and
calculated values. This correction ensures that the predicted kinetic energy of the pho-
toelectrons ejected close to time zero from the initially excited state v by ionization
to the state w matches the experimental value.

5.2 Non-Perturbative Wavepacket-Based Calculation

The approximate perturbative method of calculating the time-resolved photoelectron
spectrum outlined in the previous section lends itself nicely to be used in conjunction
with trajectory-based dynamics simulations. To go beyond the perturbative treatment,
the field-matter interaction due to the pump and probe pulses has to be explicitly
added to the molecular Hamiltonian, and the system propagated under the influence
of this total Hamiltonian [7, 18]. We represent the pump and probe fields by
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E j (t) = 1

2
ε j0 exp[−4 ln(2)(t − t j )

2/τ2
j ]

(
exp[iω j t] + exp[−iω j t]

)
(5.17)

In the dipole approximation, the total Hamiltonian is given by

Ĥtot = Ĥ −
pu,pr∑

j

μ̂ · E j (t) (5.18)

In contrast to the previous method, the excitation and ionization processes are not
assumed impulsive, and it is not assumed that the pulses are non-overlapping. The
Hamiltonian is represented in the basis of the neutral electronic states as well as the
different ionization continua corresponding to different cationic states. The state of
the system is given according to

|�(t)〉 =
∑

v

|�(v)(t)〉|ψ(v)〉 +
∑

w

∫ ∞

0
|�(w)(t)〉|ψ(w)(Ek)〉 dEk (5.19)

where v labels the neutral states, and w labels the cationic states or equivalently
the ionization continua. The cationic electronic state |ψ(w)(Ek)〉 is a function of the
photoelectron kinetic energy Ek . As previously, the photoelectron spectrum can be
calculated from the probability density of the ionization continua long after all fields
have decayed, i.e. from the overlap between the state |�(t)〉 for t → ∞ and the
electronic ionization continua

σ(Ek,�t) =
∑

w

|〈�(t → ∞)|ψ(w)(Ek)〉|2 (5.20)

where �t = tpr − tpu is the delay between the center of the field envelopes of the
pump and probe pulses. It should be clear that this approach in principle involves
a number of simulations—one for each value of �t—in contrast to the previously
described method. Notice that unlike Eq. (5.2), the state of the photoelectron is not
explicitly considered in the calculation.

To calculate the spectrum as given in Eq. (5.20), the state |�(t)〉 is represented in
the framework of Multi-Configuration Time-Dependent Hartree (MCTDH) and prop-
agated following the standard prescription presented briefly in Sect. 4.1. The ioniza-
tion continua are discretized such that the integral over kinetic energy is replaced by
a sum. In essence, we include in the MCTDH calculations a number of discrete neu-
tral states, and for each ionization continuum, we include a large number of identical
cationic states displaced in energy to represent the variable energy of the photoelec-
tron, Fig. 5.1. Thus, we make the approximation that the electron is ejected without
interacting with the core of the cation such that the energies of the photoelectron and
the cationic states are additive as also assumed in the previous method.

For the excitation and ionization processes, we invoke the Condon approxima-
tion, i.e. the dependence of the transition dipole moment on the nuclear coordinates
is neglected. This approximation is somewhat justified as the MCTDH calculations

http://dx.doi.org/10.1007/978-3-319-00386-3_4
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Fig. 5.1 Ionization of a
nuclear wavepacket from
two different neutral excited
states v and v′ to two differ-
ent cationic states w and w′
respectively. The ionization
continua are represented by a
set of discrete states displaced
in energy to represent the
energy of the ejected photo-
electron Ek
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are performed in the diabatic representation in which the electronic character of the
states is not or only weakly dependent on the nuclear coordinates. In addition, the
initial state is taken as the narrow vibrational ground state of the ground electronic
state over the span of which the change in the transition dipole moment is negligi-
ble. Hereby, we neglect among others the Herzberg-Teller effect [19]. In contrast
to the previously described method, the transition dipole moment involved in the
photoionization process is also assumed to be independent of nuclear coordinates.
Moreover, the transition dipole moment is assumed to be independent of the pho-
toelectron kinetic energy over the small energy ranges studied inhere similar to the
approach of Seel and Domcke [7]. This is in accordance with experimental results
on ionization cross-sections [20, pp. 41–43]. In the simulations, this is achieved by
representing the discretized continua by grids evenly spaced in energy.
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Chapter 6
Electronic Structure

The methods for simulating nuclear dynamics presented in the previous chapters rely
on a very fundamental constituent—the potential energy surface. Potential energy
surfaces can be obtained from spectroscopic measurements on the basis of which ana-
lytic potential energy functions can be fitted. Infrared and Raman spectroscopy can
be used to obtain the electronic ground state potential energy surface. Laser-induced
fluorescence and absorption spectroscopy can be used to determine the potential
energy surfaces of the excited states if the ground state is well characterized [1, 2].
However, for all but the smallest molecules, the determination of full-dimensional
potential energy surfaces from spectroscopic measurements is a monumental task.
On the other hand, methods of electronic structure calculation can readily be applied
to this challenge.

6.1 Coupled-Cluster Methods

To be applicable for our interests, a given electronic structure method should be able
to describe the ground state as well as the excited states within the same framework.
Furthermore, it is desirable if the method provides a hierarchy of approximations
where the accuracy can be consistently improved upon by moving up in the hierarchy.
One such approach is the coupled-cluster method [3, 4] in which properties such as
excitation energies can be calculated using response theory [5–8]. In coupled-cluster
theory, the ansatz for the electronic state is given by [9, pp. 650–654].

|ψCC〉 = exp(T̂ )|ψ0〉 (6.1)

where |ψ0〉 is the reference usually taken as the Hartree-Fock state. T̂ is the so-called
cluster operator, not to be confused with the kinetic energy operator, given by

T̂ =
∑

j

t j τ̂ j (6.2)
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The general excitation operator τ̂ j exchanges a given number of occupied spin-
orbitals in the reference state with unoccupied spin-orbitals, or, equivalently, excites
a given number of electrons from the reference state. The amplitude of each excita-
tion is denoted by t j . Truncation of the cluster operator at a given excitation level
leads to a hierarchy of methods: CCS, CC2, CCSD, CC3 etc [10–12]. Furthermore,
CCSDR(3), a non-iterative analog of CC3, can be defined which lies in-between
CCSD and CC3 in accuracy [13]. In addition to response theory, the equation of
motion (EOM) formalism can also be used to obtain excitation energies [14–16]. In
the EOM formalism, ionized states can also be treated by use of EOMIP allowing for
calculation of cationic potential energy surfaces in the same formalism as the neu-
tral excited states [17]. The coupled-cluster calculations presented in Chap. 7 were
performed using Cfour [18] and Dalton [19].

6.2 Multi-Reference Methods

In cases of strong interaction between electronic states, it is necessary to use a
method which is capable of describing regions of near degeneracy between potential
energy surfaces in the vicinity of conical intersections. One such method is Multi-
Configuration Self-Consistent Field (MCSCF) which corrects the reference state for
static correlation effects. In MCSCF, the ansatz for the electronic state is given by

|ψMC〉 =
(

1 +
∑

j

t j τ̂ j

)
|ψ0〉 (6.3)

with the same definitions for τ̂ j and t j as in coupled-cluster. In MCSCF, both the
amplitudes t j as well as the molecular orbitals making up the reference state |ψ0〉 are
optimized simultaneously [20–22]. To select which configurations to include in the
summation in Eq. (6.3), the Complete-Active Space Self-Consistent Field (CASSCF)
method is often invoked. In CASSCF, an active space consisting of both occupied
and unoccupied orbitals is chosen, and within this subspace all configurations are
included, i.e. full configuration interaction. A CASSCF calculation with n electrons
distributed in m active orbitals is termed CAS(n, m)SCF. An important development
for the simultaneous treatment of several states using CASSCF is state averaging.
Instead of optimizing the orbitals for each state individually, the optimization is done
in an averaged fashion for a specific number of states to ensure that they are treated
on an equal footing. A state-averaged CASSCF calculation in which the orbitals are
optimized simultaneously for Ne states is termed SA-Ne-CAS(n, m)SCF. The SA-
CASSCF calculations presented in Chap. 9 were performed using Molpro 2010.1
[23].

CASSCF retrieves part of the static correlation. The so-called dynamical cor-
relation can partly be retrieved by multi-reference perturbation theory using the
CASSCF wavefunction as the reference usually in the form of CASPT2, i.e.

http://dx.doi.org/10.1007/978-3-319-00386-3_7
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second-order perturbation theory [24–26]. CASPT2 can also be performed for multi-
ple states yielding Multi-State Multi-Reference CASPT2 (MS-MR-CASPT2) when
all states are treated together [27, 28]. One problem encountered in CASPT2 calcu-
lations is so-called intruder states, i.e. states which are not included in the CASSCF
calculation but show up due to the subsequent perturbation theory treatment. This
problem can be remedied by use of a level-shift [29]. The on-the-fly MS-MR-
CASPT2 dynamics and time-resolved photoelectron spectra calculations presented
in Chap. 8 were performed using the combined Ab Initio Multiple Spawning and
Molpro 2006.2 code [30, 31]. These simulations also included calculation of MS-
MR-CASPT2 analytic non-adiabatic couplings [32, 33]. For the calculation of time-
resolved photoelectron spectra, cationic states were also treated, however, the orbitals
from the calculation of the neutral states were frozen resulting in a CAS configuration
interaction treatment of these states.
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Chapter 7
The Cycloketones

The carbonyl chromophore plays a central role in organic photochemistry and
photophysics in particular due to the interplay between two types of excited states
resulting from the promotion of an electron to the anti-bonding π∗ orbital from either
the π or an n orbital [1]. Prominent examples of processes involving these states is
the Norrish Type I α-cleavage [2–5], the Norrish Type II intramolecular γ-hydrogen
abstraction, and efficient intersystem crossing with a simultaneous change in the
orbital angular momentum as established by El-Sayed’s selection rule [6–8].

One group of molecules incorporating the carbonyl chromophore is the
cycloketones. In addition to the involvement in the processes described above, we
will show inhere that the cycloketones also represent a very good model system to
exhibit the subtle details of an internal conversion process. By use of time-resolved
mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) as well as
wavepacket simulations, we investigate the dynamical nature of the S2 → S1 inter-
nal conversion—at the Franck-Condon geometry corresponding to the (n, 3s) →
(n,π∗) transition. This transition from a molecular Rydberg state to a valence excited
state involves two states of significantly different electronic character and thereby
represents an example of weak interaction.

The study involves the seven cycloketones presented in Fig. 7.1. The molecules
cover three ring sizes from four to six carbon atoms as well as methyl and ethyl substi-
tutions in different positions on the ring. Whereas cyclobutanone and cyclohexanone
belong to the Cs point group and cyclopentanone belongs to the C2v point group,
the substituted molecules do not posses any symmetry. These variations between
the molecules allow us to investigate the influence of a range of structurally, and to
some extent electronically, determined parameters on the rate of internal conversion:
the C-CO-C angle and ring strain, the specific nature and frequency of vibrational
motion, the vibrational density of states, and point group symmetry. In contrast to
the variations in structure, the energy of the (n,π∗) and (n, 3s) states at the Franck-
Condon geometry do not differ significantly between the seven molecules in partic-
ular not for molecules of the same ring size. The absorption maximum is found at

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses, 61
DOI: 10.1007/978-3-319-00386-3_7, © Springer International Publishing Switzerland 2013
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Fig. 7.1 The seven cycloketones included in the study. (a) cyclobutanone (CB), (b) 2-methyl-
cyclobutanone (2-MeCB), (c) cyclopentanone (CP), (d) 2-methylcyclopentanone (2-MeCP), (e)
3-methylcyclopentanone (3-MeCP), (f) 3-ethylcyclopentanone (3-EtCP), and (g) cyclohexanone
(CH)

Table 7.1 Details of the pump and probe pulses used in the time-resolved experiments on the
cycloketones

Molecules ωpu/eV Epu/nJ ωpr/eV Epr/mJ τxc/fs

CB 6.20 350 3.52 2.0 124
2-MeCB 6.20 230 3.73 1.9 172
CP 6.20 350 3.52 2.0 124
2-MeCP 6.20 230 3.73 1.9 179
3-MeCP 6.20 230 3.73 1.9 172
3-EtCP 6.20 230 3.73 1.9 172
CH 6.33 120 3.52 2.0 126

4.28±0.15 eV for the (n,π∗) state and at 6.20±0.10 eV for the (n, 3s) state [9–13].
This similarity allows for a direct comparison between the molecules.

7.1 Time-Resolved Experiments

Parts of the results described in this section have been published in [14, 15]. Some
text passages and/or figures and tables in this section have been reproduced and
adapted with permission from John Wiley and Sons.

In the time-resolved experiments, the molecules were excited directly by one
pump photon to the (n, 3s) state from which they can be ionized by a single probe
photon. Upon internal conversion to the (n,π∗) state, the energy of one probe photon
is not sufficient to ionize the molecule upon conservation of nuclear kinetic energy.
Table 7.1 lists the typical frequencies and energies of the pump and probe pulses as
well as their cross-correlation (XC) determined experimentally.

The temporal evolution of the parent ion currents following excitation to the (n, 3s)
state is presented in Figs. 7.2 and 7.3. In four cases, the time-resolved photoelectron
spectra were also recorded giving rise to the transients of the integrated (n, 3s)
photoelectron band presented in Fig. 7.4. The temporal evolution of the parent ion
currents closely resemble those of the (n, 3s) photoelectron band for these four
cases. Consequently, the decay in the ion yield can be used as a measure of the
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Fig. 7.2 Temporal evolution of the parent ion currents for six of the seven cycloketones
following excitation to the (n, 3s) state. For cyclopentanone, 3-methylcyclopentanone, and
3-ethylcyclopentanone, a non-resonant XC component has been subtracted from the signal and
fit. Adapted with permission from Kuhlman et al. [14, 15]. Copyright John Wiley and Sons

lifetime of the (n, 3s) state. This correspondence between ion and photoelectron
signals is a consequence of the chosen pump-probe scheme. The ion currents reveal
a set of timescales for the (n, 3s) → (n,π∗) transition, i.e. S2 → S1, ranging over
more than an order of magnitude from 0.37 ± 0.01 ps for 2-methylcyclobutanone to
9.67 ± 0.43 ps for cyclohexanone, cf. Table 7.2. A similar trend is observed for the
(n, 3s) photoelectron decays, cf. Table 7.3. Two clear trends are observed in these
timescales: (1) the timescale increases with increasing ring size, and (2) substitution
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Fig. 7.3 Temporal evolution of the parent ion current for cyclohexanone following excitation to
the (n, 3s) state. A non-resonant XC component has been subtracted from the signal and fit
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Fig. 7.4 Temporal evolution of the photoelectron currents of the spectrally integrated (n, 3s) pho-
toelectron band. For cyclopentanone, a non-resonant XC component has been subtracted from the
signal and fit. Adapted with permission from Kuhlman et al. [14, 15]. Copyright John Wiley and
Sons
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Table 7.2 Timescales for the decay of the parent ion current for the seven cycloketones following
excitation to the (n, 3s) state

Molecule τ1/ps τ2/ps

CB 0.08 ± 0.01 0.74 ± 0.01
2-MeCB 0.08 ± 0.01 0.37 ± 0.01
CP 5.39 ± 0.17
2-MeCP 3.05 ± 0.01
3-MeCP 5.79 ± 0.16
3-EtCP 5.16 ± 0.17
CH 9.67 ± 0.43

Reprinted with permission from Kuhlman et al. [14, 15]. Copyright John Wiley and Sons

Table 7.3 Timescales for the decay of the (n, 3s) photoelectron band for four of the cycloketones.
Also given in two cases is the period of the spectral oscillation of the band

Molecule τ1/ps τ2/ps T /ps

CB 0.31 ± 0.06 0.74 ± 0.02 0.95 ± 0.03a

2-MeCB 0.32 ± 0.02
CP 5.37 ± 0.11
2-MeCP 3.47 ± 0.03 0.42 ± 0.01b

Reprinted with permission from Kuhlman et al. [15]. Copyright John Wiley and Sons
aFrom the fit to the low-energy part of the (n, 3s) photoelectron band
bAverage period of oscillation from the fit to the low- and high-energy part of the (n, 3s) photoelec-
tron band

in the 2-position but not in the 3-position decreases the timescale. According to
the standard energy gap law derived from Fermi’s golden rule for the non-radiative
transition rate, the rate of transition should be an exponential decaying function of the
energy gap between the two states involved [16, 17]. As the energy gap between the
(n, 3s) and (n,π∗) states does not differ significantly between the molecules, such
a law does not straightforwardly explain the large timescale differences observed
here. We will inhere disentangle the dynamics of the internal conversion process in
the cycloketones and thereby identify the specific properties which can explain the
inter- and intragroup timescale differences observed.

TRPES provides more information than the timescale for electronic population
transfer. Figure 7.5 depicts the transients of the spectrally integrated (n, 3s) pho-
toelectron band of cyclobutanone and 2-methylcyclopentanone. The integration has
been performed over the low- and high-energy spectral halves of the band separately.
Such an integration scheme reveals spectrally oscillating features—an unequivocal
sign of coherent nuclear motion affecting the electronic structure. For cyclobutanone,
the period of oscillation is 0.94 ± 0.03 ps whereas it is 0.42 ± 0.01 ps in the case
of 2-methylcyclopentanone. These periods correspond to frequencies of ∼4 meV
(∼35 cm−1) and ∼10 meV (∼80cm−1) respectively. Due to the very low frequency,
in particular in the case of cyclobutanone, the observations reveal exactly which vibra-
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Fig. 7.5 Transients of the
low- (blue) and high-energy
(pink) spectral halves of the
(n, 3s) photoelectron band
along with fits (−). In both
cases, a clear phase relation-
ship is observed between
the oscillatory components
of the fits indicated by the
respective colored lines.
(a) Cyclobutanone. (b) 3-
methylcyclopentanone—
reprinted with permission
from Kuhlman et al. [15].
Copyright John Wiley and
Sons
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tional mode is dominant in mediating the coupling between the two electronic states.
In the ground state, this low-frequency ring-puckering mode primarily involves the
C-CO-C moiety of the molecule with the carbonyl group bending out of the molecular
plane albeit with some motion of the last CH2 group in the case of cyclobutanone [18–
20]. The large difference in frequency between the two molecules is an important
factor in explaining the observed differing timescales, however, it is not fully suffi-
cient on its own. As we will show below, at least two factors have to be taken into
account: the frequency of the specific vibrational mode involved and the difference
in energy of the (n, 3s) state between the Franck-Condon and equilibrium geome-
tries, i.e. the difference between the vertical and the adiabatic excitation energy. In
addition, the total density of vibrational states on the (n,π∗) surface plays a small
role.
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7.1.1 A Representative Model

The differences in the timescale of the (n, 3s) → (n, π∗) transition in the seven
cycloketones can be rationalized by considering the model depicted in Fig. 7.6a.
Once excited to the (n, 3s) state, the molecule will vibrate in some modes, and based
on the TRPES data, it can be concluded that only one (or a few) of these plays
an important role in the pathway to the lower electronic state. We will therefore
restrict the discussion to a one-dimensional representation. In one dimension, the
position of the crossing point with the lower electronic surface (or possibly avoided
crossing) is given by two factors (everything else being equal): the frequency of
the vibrational mode in question and the energy difference between the Franck-
Condon and equilibrium geometries of the (n, 3s) state. As indicated in Fig. 7.6b,
a low frequency, i.e. a small curvature, and a large energy difference will allow
the molecule to access a larger configurational space whereby it can more easily
access the region near the very important conical intersection facilitating a faster
non-adiabatic population transfer. Such a transition is illustrated by the magenta
arrow in Fig. 7.6a as opposed to the adiabatic dynamics indicated by the blue arrow.

The cause of the intergroup timescale differences, i.e. the differences in timescale
between molecules of different ring size, is primarily rooted in the energy differ-
ence factor which is apparent by comparison of the unsubstituted cycloketones. The
smaller strained cyclobutanone is able to relieve ring strain in the (n, 3s) state through
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Fig. 7.6 (a) Scheme illustrating the possible dynamics following excitation to the (n, 3s) state in
the cycloketones. Depending on the configurational space sampled, the wavepacket can follow two
pathways: 1 an adiabatic pathway indicated by the blue arrow and 2 a non-adiabatic pathway
indicated by the magenta arrow. (b) The vibrational frequency ω and the energy difference �E
between the Franck-Condon and equilibrium geometries of the (n, 3s) state determine the intersec-
tion point between the two excited states and the configurational range available to the wavepacket
�Q. Thereby, these two parameters significantly influence the rate of non-adiabatic transition
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vibration in the ring-puckering mode whereas the five-membered ring of cyclopen-
tanone is less prone to such motion. As calculated by EOM-CCSD, the energy dif-
ference in the (n, 3s) state between the Franck-Condon and equilibrium geometries
is 0.32 eV for cyclobutanone whereas it is only 0.14 eV for cyclopentanone. The
more vibrationally congested (n, 3s) absorption spectrum for cyclobutanone com-
pared to cyclopentanone further corroborates this difference [12]. The even slower
transition in cyclohexanone can be understood in terms of the inverse relationship
between ring size and intensity of vibrational bands and, thus, release of angle strain
in the C-CO-C moiety [10]. The frequency factor, caused by different curvatures
of the potential energy surface as illustrated by the examples in Fig. 7.6b, also con-
tributes to the intergroup timescale differences. The effect is clearly demonstrated
by the observed anti-correlation between the vibrational frequency and the rate of
transition for cyclobutanone and 2-methylcyclopentanone.

The intragroup timescale differences, i.e. the differences in timescale between
molecules of the same ring size, can largely be understood in terms of the fre-
quency factor and to what extent this is affected by substitution. Alkyl substitution
in the 2-position leads to a significantly increased rate of transition whereas this
is not the case for substitution in the 3-position. This is observed when comparing
2-methylcyclopentanone and 3-methylcyclopentanone. Also in cyclobutanone, sub-
stitution in the 2-position leads to an increased rate of transition. The vibrational
mode central to the internal conversion process primarily involves motion in the
C-CO-C moiety, thus, substitution in the 2-position should have a larger effect on the
rate of transition compared to the 3-position as indeed is the case. This observation
in turn cements the conclusion on the non-ergodicity of the process—i.e. the dynam-
ics are truly localized not only in phase space, as deduced from the observation of
coherent nuclear motion, but also in real space. The intergroup timescale differences
also reflect this locality as the apparent non-local change of ring size actually has
a very large local effect by significantly affecting the angle of the central C-CO-C
moiety.

In identifying the pertinent mode mediating the population transfer, we have not
discussed the role of point group symmetry. In cyclobutanone and cyclohexanone, the
modes that couple the (n, 3s) and (n,π∗) states are Franck-Condon active whereas
this is not the case in cyclopentanone. By substitution in cyclopentanone, we break
the C2v symmetry of the molecule thereby lifting the symmetry restrictions on the
coupling and Franck-Condon active modes. However, only in the case of substitution
in the 2-position does this lead to a significant change in the rate of transition. This
observation could speak against the importance of point group symmetry in these
cases. The application of point group symmetry does not allow for an assessment of
the size of a given matrix element, it only allows one to assess whether the matrix ele-
ment is zero by symmetry. Thus, breaking of symmetry by substitution in the 2- and
3-position does not necessarily have the same consequence. Group theory only tells
us that upon substitution in either position, certain matrix elements are not necessar-
ily zero by symmetry anymore, however, they could still be negligible. Therefore,
it is difficult to assess whether the increased rate of transition in cyclopentanone
due to substitution in the 2-position is partly influenced by symmetry breaking in
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particular because a similar increase in transition rate is observed upon substitution
in cyclobutanone which does not have the same symmetry restrictions. We will go
into more detail regarding point group symmetry in Sect. 7.2.2.

Although it has been stressed that the dynamics leading to disposal of the elec-
tronic energy are truly localized, an increase in the total density of vibrational states
on the lower surface does slightly speed up the process. This effect is a consequence
of additional vibrational degrees of freedom acting as acceptor modes in the lower
electronic state. Comparison between the rates of transition for the molecules of
different ring size does not immediately reveal this aspect as the two other effects
discussed play a much larger role. It is, however, revealed by a comparison between
the rates of transition for 3-methylcyclopentanone and 3-ethylcyclopentanone. The
addition of an extra CH2-group increases the density of vibrational states by a factor
of ∼100 at an energy of 2 eV, approximately the energy difference between the (n, 3s)
and (n,π∗) states, as calculated using a Beyer-Swinehart algorithm [21]. However,
this factor of 100 only leads to a small decrease in the timescale for transition from
5.79 ± 0.16 ps to 5.16 ± 0.17 ps—very different than the behavior expected from
application of theory in the statistical limit [16, 17, 22, 23].

7.2 Wavepacket Simulations

Some text passages and/or figures and tables in this section have been reprinted with
permission from Kuhlman et al. [24]. Copyright 2012, American Institute of Physics.

The previous section provided a qualitative model for describing the (n, 3s) →
(n,π∗) internal conversion in the cycloketones based on time-resolved experiments.
In the next sections, results from wavepacket simulations on cyclobutanone and
cyclopentanone will allow for a more in detail analysis of the process. By calcula-
tion of time-resolved photoelectron spectra, a basis for direct comparison between
theory and experiment is provided. We will start out by briefly presenting the model
Hamiltonian employed in the wavepacket calculations.

7.2.1 Model Hamiltonian

The ground and excited state equilibrium geometries of cyclobutanone and cyclopen-
tanone are presented in Fig. 7.7. Structural parameters which differ significantly
between the geometries are indicated. Upon population of the excited states, we
expect nuclear motion towards the respective equilibrium geometry to take place.
Thus, the model Hamiltonian employed in the wavepacket calculations should be
given in terms of coordinates which can describe the changes between the ground
and excited state equilibrium geometries. Model vibronic coupling Hamiltonians
(VCHAM) were therefore parameterized in terms of five normal modes of vibra-
tion. In order of increasing frequency as calculated at the MP2/cc-pVTZ [25] level
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Fig. 7.7 Equilibrium geometries of the ground, (n,π∗), and (n, 3s) states of cyclobutanone and
cyclopentanone as obtained by CCSD/cc-pVTZ and EOM-CCSD/cc-pVTZ+1s1p1d. Important
structural differences are indicated. Adapted with permission from Kuhlman et al. [24]. Copyright
2012, American Institute of Physics. (a) Ground state. (b) (n,π∗) state. (c) (n, 3s) state

of theory, these modes are: ring-puckering, C=O out-of-plane bend (carbonyl pyra-
midalization), symmetric C-CO-C stretch, asymmetric C-CO-C stretch, and C=O
stretch. The dimensionless normal coordinates Qκ corresponding to these modes are
labeled in order of increasing frequency as κ = 1, 2, 7, 12, 21 for cyclobutanone and
κ = 1, 3, 8, 16, 28 for cyclopentanone.

The ab initio data used to fit the VCHAMs consisted of 1471 points for cyclobu-
tanone and 1589 points for cyclopentanone calculated at the CCSD/EOM-CCSD
level of theory with a cc-pVTZ+1s1p1d basis set. The 1s1p1d set of diffuse func-
tions is described in Sect. A.1 of Appendix A. The ground, (n,π∗), (n, 3s), and
(n, 3p) states as well as the cationic ground state were included in the calculations.
The diabatic electronic states were numbered in order of increasing energy at the
Franck-Condon point as v = 1, 2, 3, 4, 5 respectively. The two ground states were
assumed uncoupled from the excited states except through the time-dependent fields
of the pump and probe pulses. Examples of the fits obtained to the ab initio adiabatic
potential energy surfaces are illustrated in Figs. 7.8 and 7.9. All parameters of the
VCHAMs as well as the equilibrium geometries are tabulated in Appendix A.

7.2.2 Population Transfer Dynamics

We have performed wavepacket calculations using the VCHAMs for cyclobutanone
and cyclopentanone in the Multi-Configuration Time-Dependent Hartree formalism
(MCDTH). In one calculation, no time-dependent fields were included. The initial
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Fig. 7.8 Examples of CCSD/EOM-CCSD data (◦) for cyclobutanone along with the VCHAM fits
to the ground (black), (n,π∗) (purple), (n, 3s) (blue), and (n, 3p) (pink) states as well as the cationic
ground state (green)

wavepacket in the (n, 3s) state was taken as the Franck-Condon wavepacket obtained
by operating with a unit dipole operator on the ground state wavefunction obtained
by propagation in imaginary time [26]. In other calculations, either the pump field or
both the pump and the probe fields of the form given in Eq. (5.17) were included. The
Condon approximation was invoked in all cases, however, the electronic transition
dipole moments calculated by linear response CCSD were used for the transitions
to the excited states induced by the pump. For transitions from the excited states to
the ground cationic state induced by the probe field, the electronic transition dipole
moment was set to unity. The details of the basis sets, transition dipole moments, and
fields are given in Tables 7.4, 7.5, and 7.6. To represent the ionization continuum, a

http://dx.doi.org/10.1007/978-3-319-00386-3_5
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Fig. 7.9 Examples of CCSD/EOM-CCSD data (◦) for cyclopentanone along with the VCHAM
fits to the ground (black), (n,π∗) (purple), (n, 3s) (blue), and (n, 3p) (pink) states as well as the
cationic ground state (green)

sine discrete variable representation (DVR) consisting of 151 equally spaced points
from Ek = 0.0–1.5 eV was employed along with five single-particle functions. All
calculations used a timestep of 0.2 fs and employed the variable mean-field inte-
gration scheme with a sixth-order Adams-Bashforth-Moulton predictor-corrector
integrator and an error tolerance of 10−8.

Figure 7.10 presents the absorption spectra obtained from both the calculations
with and without fields. For both molecules, an intense peak is observed at a detuning
from the vertical transition frequency of �ω = −0.05 eV. The spectrum is slightly
more vibrationally congested in the case of cyclobutanone which is also observed
experimentally albeit to a much larger extent [12].
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Table 7.4 Parameters of the pump and probe fields used in the calculations on cyclobu-
tanone/cyclopentanone �ω indicates a possible detuning from the vertical transition frequency
(as obtained from the VCHAM)

Field ε0/au ω/eV t0/fs τ/fs

Pump 3.462 · 10−3 6.597/6.480 + �ω 0 88
Probe 7.555 · 10−3 3.520 �t 88

Table 7.5 Length gauge transition dipole moment, oscillator strength, and polarization of transi-
tions from the ground state calculated by linear response CCSD/cc-pVTZ + 1s1p1d for cyclobu-
tanone/cyclopentanone

State µ/au f Pol.a

(n,π∗) 6.2 · 10−5/8.7 · 10−4 6.8 · 10−6/9.4 · 10−5 (x, z)/(z)
(n, 3s) 2.6 · 10−1/1.6 · 10−1 4.3 · 10−2/2.5 · 10−2 (x, z)/(x, y)
(n, 3p) 1.0 · 10−2/5.7 · 10−4 1.8 · 10−3/9.8 · 10−4 (x, z)/(z)
ax: ⊥ to molecular plane, y: ‖ to plane, and ⊥ to C=O, and z: ‖ to plane, and ‖ to C=O

Table 7.6 Number of single-particle functions for each mode and electronic state as well as the
size of the harmonic oscillator DVR grid for cyclobutanone/cyclopentanone for the calculations
without fields

κ Ground (n,π∗) (n, 3s) (n, 3p) Cation DVR grid

1/1 1 (3) 8 4 3 1 (3) 60/60
2/3 1 (3) 8 4 3 1 (3) 55/55
7/8 1 (3) 8 4 3 1 (3) 80/60
12/16 1 (3) 8 4 3 1 (3) 100/100
21/28 1 (3) 8 4 3 1 (3) 170/170

The corresponding values for the calculations including fields are given in parentheses if these
differ. Adapted with permission from Kuhlman et al. [24]. Copyright 2012, American Institute of
Physics
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Fig. 7.10 Absorption spectra for the (n, 3s) state. The intensity at a given detuning (�ω) from the
vertical transition energy is given as the population of the (n, 3s) state at t = 100 fs in a calculation
with ωpu = ω + �ω. The black lines indicate spectra obtained by Fourier transformation of the
autocorrelation function following a Franck-Condon excitation to the (n, 3s) state (i.e. no fields
included). (a) Cyclobutanone. (b) Cyclopentanone



74 7 The Cycloketones

10
−1

10
0

0 5 10 15
Time/ps

N
or

m
al

iz
ed

 (
n,

3s
) 

Po
pu

la
tio

n

-0.075eV
-0.050eV
-0.025eV
0.000eV
0.025eV
0.050eV
0.075eV
0.100eV
0.125eV
0.150eV
0.175eV
0.200eV
0.225eV
0.250eV
0.275eV
0.300eV
FC

0 25 50 75 100

10
−1

10
0

Time/ps

N
or

m
al

iz
ed

 (
n,

3s
) 

Po
pu

la
tio

n

-0.075eV
-0.050eV
-0.025eV
0.000eV
0.025eV
0.050eV
0.075eV
0.100eV
0.125eV
0.150eV
0.175eV
0.200eV
0.225eV
0.250eV
0.275eV
0.300eV
FC

Fig. 7.11 Population of the (n, 3s) state following excitation by a pump pulse with center frequency
at different detunings (�ω) from the vertical transition frequency as well as for the Franck-Condon
(FC) excitation. The population has been normalized at t = 100 fs in all cases. (a) Cyclobutanone.
(b) Cyclopentanone

The timescale for the (n, 3s) → (n,π∗) transition is dependent on the detuning
as exhibited by the (n, 3s) population decays in Fig. 7.11. A clear increase in the
rate of transition is observed upon increasing the center frequency of the pump field
from the intense peak at �ω = −0.05 eV to the higher energy vibrational peaks in
the absorption spectra. For both molecules, we observe (at least) two components
in the population decay: an initial prompt component with a fast decay rate and a
delayed component with a slower decay rate. Higher excitation energy shifts the
ratio of the two components towards the prompt decay component. The ratio of
the prompt to the delayed component is much larger for cyclobutanone compared
to cyclopentanone which, in addition to slower decay rates for the latter, leads to
the longer overall timescale for population decay in cyclopentanone compared to
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Fig. 7.12 Effective diabatic coupling between the (n,π∗) and (n, 3s) states. Notice the different
scaling of the ordinate axis for (a) cyclobutanone and (b) cyclopentanone

cyclobutanone. It should be clear from Fig. 7.11b that the timescale for population
transfer in the simulations on cyclopentanone is much longer than what is observed
in the experiments.

The large difference in the timescale for population transfer between cyclobu-
tanone and cyclopentanone can be rationalized on the basis of the effective diabatic
coupling between the (n, 3s) and (n,π∗) states, cf. Fig. 7.12. The following discus-
sion is based on the simulations excluding all fields. The effective diabatic coupling
is calculated from Eq. (4.36) at the center of the wavepacket in the (n, 3s) state.
As mentioned previously, the modes that couple the (n, 3s) and (n,π∗) states in
cyclobutanone are Franck-Condon active which is directly reflected in the non-zero
value of the effective coupling at time zero. In cyclopentanone on the other hand,
the effective coupling is very small close to time zero as the coupling modes are not
Franck-Condon active. As the system evolves, internal vibrational energy redistrib-
ution (IVR) in the (n, 3s) state induced by the third-order intra-state coupling terms
of the VCHAM will transfer energy to the coupling modes on a 15–20 ps timescale,
cf. Fig. 7.13b. IVR is thereby responsible for the gradual increase in the effective
coupling observed in Fig. 7.12b.

Fourier transformation of the effective coupling reveals which modes are impor-
tant in modulating the population transfer, cf. Fig. 7.14. In cyclobutanone, the dom-
inating contributions are linear in the ring-puckering (peak at ∼0.03 eV) and C=O
out-of-plane bend (∼0.07 eV) modes. The symmetric C-CO-C stretch (∼0.11 eV)
and C=O stretch (∼0.19 eV) have a smaller effect on the coupling. In cyclopen-
tanone, the situation is markedly different. On the short timescale, the coupling
is mostly modulated by the breathing motion of the wavepacket in the asymmetric
C-CO-C stretch mode (∼0.25 eV). On a longer timescale, the coupling is mostly mod-
ulated by combined motion in the ring-puckering and the asymmetric C-CO-C stretch
modes (∼0.05, ∼0.10, and ∼0.15 eV). Although cyclobutanone and cyclopentanone
exhibit significantly different behavior, the involvement of low-frequency modes in
modulating the effective coupling is a common trait as expected from experiment.

http://dx.doi.org/10.1007/978-3-319-00386-3_4
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Fig. 7.13 Amplitudes of the oscillations of the coordinate expectation values in the (n, 3s) state.
Adapted with permission from Kuhlman et al. [24]. Copyright 2012, American Institute of Physics.
(a) Cyclobutanone. (b) Cyclopentanone
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Fig. 7.14 Fourier transform of the effective diabatic coupling between the (n,π∗) and (n, 3s)
states. A low-pass filter has been applied to filter out noise from the spectrum. (a) Cyclobutanone.
(b) Cyclopentanone

However, it should be noted that the very low vibrational frequencies observed in
the experiments are not reproduced by the calculations.

The difference of timescales covers two significantly different dynamical pictures
which to a large extent hinge on the electronic state symmetries of the two molecules:
one direct and one indirect mechanism of population transfer. In cyclobutanone, the
direct picture is prominent which results from initial motion in the reactive cou-
pling modes. For cyclopentanone, the reactive coupling modes are not activated
initially, and the indirect picture is most prominent. In this picture, the energy is
initially deposited in non-reactive modes and a bottleneck in phase space results
in a large component of delayed population decay as IVR is necessary for medi-
ating the transfer of energy to the reactive modes. This energy transfer occurs on
a 15–20 ps timescale, and as the population transfer occurs on a longer timescale
ergodic behavior is approached.
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7.2.3 Time-Resolved Photoelectron Spectra

We have calculated the time-resolved photoelectron spectra for cyclobutanone and
cyclopentanone. For cyclobutanone, the calculated spectra at two different values of
the detuning are compared to the experimental spectrum in Fig. 7.15. The spec-
tra are constructed from separate calculations each employing a different value
of �t , i.e. the pump-probe delay, with a 25 fs spacing. The dependence of the
timescale of population transfer on the detuning is reflected in the energy-integrated
spectra in Fig. 7.16. This figure also exhibits the correlation between the (n, 3s)
population and the intensity of the photoelectron band assumed in the interpreta-
tion of the experimental data. The good correspondence between calculated and
experimental spectra allow us to believe that the essential features of the dynam-
ics have been captured by the reduced-dimensional model employed. However, we
do not observe the spectral oscillation of the photoelectron band as was observed
in experiment.
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Fig. 7.15 (a)–(c) Experimental and calculated, for two different values of the detuning, time-
resolved photoelectron spectra of cyclobutanone. The calculated spectra have been shifted by
−0.28 eV. (d) Time-integrated spectra. The experimental spectrum has been smoothed by a moving
average filter with a resolution of 0.01 eV corresponding to the energy resolution of the calculated
spectra
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Fig. 7.16 Experimental and calculated, for two different values of the detuning, energy-integrated
spectra of the (n, 3s) photoelectron band of cyclobutanone. The dashed lines indicate the (n, 3s)
population from the simulations

For cyclopentanone, the spacing in the value of �t between the separate calcu-
lations making up the calculated spectrum ranges from 25 to 500 fs.1 The spectral
width of the (n, 3s) photoelectron band is reproduced by the calculations, but due to
the significantly slower population decay in the simulations compared to experiment,
the decay of the band is not captured by the calculated spectrum, cf. Fig. 7.17.

7.3 Conclusion

Using a set of seven cycloketones as model system, we have revealed several salient
features of the complex process of internal conversion. Most conclusions derive
from the observation that the process leading to transition from one electronic state
to another, and, thereby, to the transformation of electronic energy into vibrational
energy, is inherently localized—only one or a few vibrational modes factor in. As
observed experimentally, merely by small structural variations, the vibrational fre-
quency and the energy available in the upper excited state can be affected thereby
tuning the rate of internal conversion over a range of more than an order of magni-
tude. A lower frequency and a larger available energy result in a faster process as the
molecule can reach a configurational space in closer proximity of the crossing point
between the excited states. The total density of vibrational states plays a smaller
secondary role as an increase in this only leads to a very slight increase in the overall
rate. In contrast to the standard energy gap laws that neglect the nuclear dependence

1 For �t ≤ 15 ps. For �t > 15 ps, the spacing is 5 ps.
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Fig. 7.17 (a), (b) Experimental and calculated time-resolved photoelectron spectra of cyclopen-
tanone. The calculated spectrum has been shifted by −0.23 eV. (c) Time-integrated spectra. The
experimental spectrum has been smoothed by a moving average filter with a resolution of 0.01 eV
corresponding to the energy resolution of the calculated spectrum. (d) Energy-integrated spectra of
the (n, 3s) photoelectron band. The dashed lines indicates the (n, 3s) population from the simulation

on the electronic coupling [16, 17], our results clearly show the effect of coherent
nuclear motion on these matrix elements.

The effect of nuclear motion on the electronic coupling is also exhibited in the
wavepacket simulations on cyclobutanone and cyclopentanone. In these calcula-
tions, it is noticeable that low-frequency modes play a central role in both mole-
cules as also conjectured on the basis of the experimental results. However, for
cyclopentanone the C-CO-C asymmetric stretch mode also factors in to a significant
degree in the simulations. Whereas the time-resolved photoelectron spectrum of
cyclobutanone can be very well reproduced from the wavepacket simulations, this
is not the case for cyclopentanone. This discrepancy is likely due to the restric-
tion of the VCHAM to five modes. Other modes not included could enhance
the rate of IVR into one specific or several reactive coupling modes resulting in
a faster rate of population transfer for cyclopentanone in closer agreement with
experiment.
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Chapter 8
The Cyclopentadienes

Parts of the results described in this chapter have been published in Kuhlman et al. [1].
Some text passages and/or figures and tables in this chapter have been reproduced
by permission of The Royal Society of Chemistry.

Molecules possessing π electrons play a central role in organic photochemistry
and photophysics [2]. In the previous chapter, we encountered examples of such mole-
cules all containing the carbonyl chromophore. In this chapter, we will focus on non-
aromatic molecules containing carbon–carbon double bonds, i.e. alkenes. Alkenes
participate in a plethora of reactions induced by light such as photoisomerization
[3–10], electrocyclic ring opening and closing [11–22], sigmatropic rearrangement
[23–25], and cycloaddition [26, 27].

The rich set of photoinduced phenomena exhibited by alkenes is a consequence
of the complex nature of the excited states of π electron systems and conjugated
systems in particular. This is evident even in the simplest case of ethylene where
the lowest excited state can have different character at the Franck-Condon point and
twisted geometries [28]. For polyenes, the picture is even more complicated due to
the presence of a low-lying electronic state with a large doubly excited character
[29]. Due to the optically dark nature of this state it often eludes direct observation,
however, it is well established that it plays a significant role in the photochemistry
of polyenes with more than three conjugated double bonds [29].

In between the distinct ethylene and the longer polyenes, the role of the doubly
excited state in the dienes is more subtle. In the case of molecules with the two
double bonds in a trans-configuration with respect to the connecting single bond, i.e.
s-trans-dienes, cf. Fig. 8.1, numerous studies have investigated the state ordering of
the bright (π,π∗) state and the doubly excited state [30–36]. Both experimental and
theoretical studies suggest that the doubly excited state plays a significant role in
the initial dynamics following excitation to the bright state giving the s-trans-dienes
some of the characteristics of the longer polyenes. However, the longer time dynamics
resemble those of ethylene [37]. In the case of s-cis-dienes and cyclopentadienes in
particular, numerous experimental studies have investigated the low-lying valence
states [38–41], but only few have alluded to a discussion of the spectral position

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses, 81
DOI: 10.1007/978-3-319-00386-3_8, © Springer International Publishing Switzerland 2013
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(a) (b) (c) (d) (e)

Fig. 8.1 Structures of (a) s-trans-butadiene, (b) s-cis-butadiene, (c) cyclopentadiene (CPD), (d)
1,2,3,4-tetramethylcyclopentadiene (Me4CPD), and (e) hexamethylcyclopentadiene (Me6CPD)

of the doubly excited state [42, 43]. Despite the inability to directly locate this
dark state by absorption spectroscopy, several time-resolved mass spectrometry and
photoelectron spectroscopy (TRPES) studies have invoked the state to explain the
dynamics observed upon excitation to the bright (π,π∗) state [25, 44, 45].

In the following, we attempt to unravel the dynamics of three cyclopentadienes,
cyclopentadiene (CPD), 1,2,3,4-tetramethylcyclopentadiene (Me4CPD), and hexam-
ethylcyclopentadiene (Me4CPD), following excitation to the bright (π, π∗) state by
use of Ab Initio Multiple Spawning (AIMS). In all calculations, the electronic struc-
ture is calculated for cyclopentadiene, and the methylated species are approximately
treated in the dynamics simulations by setting the mass of the substituted hydro-
gens to that of a methyl group. The observed dynamics are discussed in light of the
dynamics of ethylene and other polyenes in particular the similar s-trans-butadiene.
Finally, we relate the results to experimental data from TRPES by direct calculation
of spectra by use of the perturbative method described in Sect. 5.1.

8.1 Electronic Structure

The two lowest valence excited states in cyclopentadiene are dominated by π → π∗
andπ2 → (π∗)2 promotions at the Franck-Condon geometry. These states are termed
V1 and V2 in Mulliken notation,1 and we will retain these labels as diabatic state
labels referring to the electronic character whereas S1 and S2 will be strictly adia-
batic labels [46]. The doubly excited character of V2 can be understood as arising
from excitation of each ethylene unit to its lowest triplet state but spin-coupled
to an overall singlet [47]. Our MS-MR-CASPT2/6-31G(d,p) [48, 49] calculations
use an active space of four electrons distributed in four orbitals, the two π and the
two π∗ orbitals, with state averaging over the ground and the lowest two excited
states. A level shift of 0.2 Hartrees was employed. Using this method, the vertical
transition energy to the S1 state is 5.46 eV in very good agreement with the best esti-
mate of 5.43 ± 0.05 eV found from a combination of high-level theoretical methods
and spectroscopic simulations [50] and in the range 5.19–6.46 eV determined using

1 Strictly, the V labels of Mulliken refer to singly excited configurations, however, the V2 state
mixes with a higher lying doubly excited configuration to attain partial doubly excited character,
and we use the V2 label to refer to this state and character.

http://dx.doi.org/10.1007/978-3-319-00386-3_5
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various high-level electronic structure methods [51–56]. The calculated vertical value
is slightly different from the spectral position of the band maximum of 5.17–5.33 eV
found from experiment [38–40, 42, 45]. Similarly, we find the vertical excitation
energy to the S2 state to be 6.51 eV, a value which falls in between previous calcu-
lated values of 6.31–7.05 eV [51, 52, 54–56] and slightly above the value of 6.2 eV
suggested on the basis of experimental results [42]. This state possesses a large
doubly excited character of ∼50 %.

Resonance Raman depolarization ratios suggest that the minimum of V2 lies below
that of V1, and a conical intersection connecting these two states is thus expected [43].
We indeed locate a minimum energy conical intersection (MECI) between S2 and
S1 which furthermore corresponds to the minimum energy configuration on the S2
potential energy surface located in this work. This S2S1 MECI is akin to the crossing
of two non-interacting diabatic states—one similar in character to V2 and one similar
to V1. We have also located three MECIs connecting S1 with the ground state on
the same intersection seam. Two of these MECIs result primarily from twisting of a
single double bond and are therefore termed ethylene-like and referred to as eth1 and
eth2. The last MECI results from a disrotatory mechanism where both double bonds
twist to some degree and is thus termed dis. The eth1 MECI is the lowest energy
configuration on the S1 potential energy surface located in this work. The three S1S0
MECIs correspond to the crossing between a state somewhat similar in character to
V1 and the ground state—the first being ionic in character with charge separation
between the two carbons of the double bonds (larger charge separation for the most
twisted double bond) and the second being of a more diradicaloid character. However,
the ∼25 % doubly excited character of the first state is an order of magnitude larger
than what is found for the S1 state at the Franck-Condon geometry. The geometries
of the four MECIs are depicted in Fig. 8.2.

(a) (b) (c) (d)

-2.064 eV -2.025 eV -2.016 eV -0.636 eV

Fig. 8.2 Geometries of the four MECIs viewed from two different angles along with the relative
energy of the S1 state with respect to the energy at the Franck-Condon point. All four MECIs are
energetically accessible after excitation to the S1 state [1]—reproduced by permission of The Royal
Society of Chemistry. (a) eth1 MECI, (b) eth2 MECI, (c) dis MECI, (d) S2S1 MECI
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Table 8.1 Details of the AIMS simulations for CPD/Me4CPD/Me6CPD

Initial conditions 0 K Wigner distribution of the harmonic ground vibrational state [57]
Initial trajectories 40
Total trajectories 179/212/205
Timestep/fs 0.387 (adaptive)
Total time/fs 190/240/290
Integrator CM Velocity-Verlet
Integrator QM Adaptive second-order Runge-Kutta

As indicated in Fig. 8.2, all four MECIs are energetically accessible after excitation
to the S1 state, and there are no barriers on the path from the Franck-Condon geometry
to either MECI (cf. Fig. B.1 in Appendix B). Furthermore, all MECIs have a peaked
geometry in the branching space (cf. Fig. B.2 in Appndix B) which leads us to expect
very fast non-adiabatic transitions. On the other hand, it is not a priori possible to
determine whether the molecule visits the part of the S1 potential energy surface that
can be directly associated with the V2 state and what role this latter state plays in the
dynamics following excitation.

8.2 Dynamics Simulations

The details of the AIMS simulations are summarized in Table 8.1. The final time
was chosen long enough to capture the essential dynamics on the excited states and
to determine the timescales for population transfer. In cases where all population
(>99 %) had been transferred to the ground state before the final time was reached,
the calculation was stopped as our focus inhere is on the excited state dynamics and
timescale of non-adiabatic transfer and not on possible thermal reactions taking place
on the vibrationally hot ground electronic state.

8.2.1 Setting the Timescale of Population Transfer

The S1 population decays in Fig. 8.3 reveal that all three molecules undergo full
population transfer from the initially excited S1 state back to S0 on a sub 300 fs
timescale. Very few spawning events from S1 to S2 are observed, and the total pop-
ulation transfer to S2 is <0.1 % for all three molecules.

The onset of population decay is preceded by a delay period tin—the so-called
induction time [58, 59]. In the case of CPD, this period is ∼25 fs whereas it is ∼32 fs
for Me4CPD and ∼106 fs for Me6CPD. To quantify the timescale of the subsequent
population transfer, we determine the half-life τ1/2 defined as the time it takes the
S1 population to reach 0.5 following the induction period. As an alternative, we fit
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Fig. 8.3 Population of the S1 state with standard deviations from bootstrapping indicated by the
shaded regions. The fitted exponentials decays are also given

Table 8.2 Timescales for the S1 population decay in CPD, Me4CPD, and Me6CPD (in fs) deter-
mined as either the induction time and the half-life or from a fitted exponential decay model

Molecule tin τ1/2 t0 τ

CPD 25 28 31 ± 2 25 ± 2
Me4CPD 32 88 80 ± 7 52 ± 2
Me6CPD 106 43 108 ± 3 55 ± 8

an exponential model

P(t) = �(t − t0) exp[−(t − t0)/τ ] + �(t0 − t) (8.1)

to yield a time t0 similar in nature to the induction period and a time constant τ for
the exponential decay. The sets of two timescales determined by these two methods
are collected in Table 8.2. The results are in line with the observation from experi-
ments of a slow-down of the dynamics upon methylation of CPD [45]. The follow-
ing discussion will explore the background for these observed timescales and their
differences.

8.2.2 Nuclear Dynamics

The initial dynamics following excitation to the S1 state are in all three molecules
characterized by significant in-plane nuclear motion as is common in conjugated
molecules exemplified by s-trans-butadiene [37]. The promotion of an electron
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from a bonding π orbital to an antibonding π∗ orbital leads to an elongation of the
double bonds in conjunction with a contraction of the connecting single bond. This
nuclear motion can be quantified by the bond alternation coordinate defined as the
sum of the double bond lengths minus the length of the connecting single bond.
The time evolution of the nuclear wavepacket density in the S1 state for this coor-
dinate is given in Fig. 8.4(left). A significant in-plane distortion is observed by the
fast increase in the expectation value of the coordinate over the first ∼15 fs before
oscillatory motion around the new equilibrium ensues after ∼25 fs. At this time, the
in-plane motion towards the S1S0 MECIs is completed. The value of the bond alter-
nation coordinate at the eth1 MECI is given by the dashed lines in Fig. 8.4(left).
The value of the coordinate for the other MECIs can be found in Table B.5 in
Appendix B. It is evident that the in-plane motion is not the source of the differ-
ent timescales observed for the population transfer between S1 and S0 in the three
molecules.

In conjunction with in-plane nuclear motion, out-of-plane motion is also observed
although this occurs on a longer timescale due to the low-frequency modes involved.
Although the timescale for torsion in the carbon backbone differs between CPD
and the methylated molecules, it does not distinguish Me4CPD from Me6CPD, cf.
Fig. 8.4 (right). In addition to distortion in the ring structure, the MECI geometries
depicted in Fig. 8.2 are also characterized by a significant twist of one (or both in
the case of the dis MECI) of the doublebonds leading to the out-of-plane bend of
the CX2 group. X refers to a hydrogen for CPD and Me4CPD and a methyl group
in the case of Me6CPD. The time evolution of the wavepacket density projected
onto the double bond twist and CX2 bend coordinates are given in Fig. 8.5. These
coordinates are observed to be highly correlated. The timescale for out-of-plane
motion in CPD is significantly shorter than that for the methylated species, and
a clear distinction can also be observed between Me4CPD and Me6CPD. These
timescale differences entail that the potential energy surface in the vicinity of the
MECIs, where the coupling between S1 and S0 is large, is visited earlier by a larger
part of the S1 population for CPD compared to Me4CPD and for Me4CPD compared
to Me6CPD. This results in a decreasing rate of non-adiabatic transition in the order
CPD > Me4CPD > Me6CPD.

From the spawning events, we can assign population transfer to one of the S1S0
MECIs by using the spawning geometries as starting points for optimization of S1S0
MECIs. This procedure reveals a bifurcation on the S1 state for CPD with 71 % of
the population transfer being attributable to the eth1 MECI and 27 % to eth2 MECI.
A very small part of the population transfer, 2 %, can be assigned to the dis MECI.
In the case of the methylated species, 73 and 98 % can be attributed to the eth1
MECI and 27 and 2 % to the eth2 MECI for Me4CPD and Me6CPD respectively.
The slowdown of the dynamics in the methylated species apparently allows for a
larger part of the S1 population to reach the vicinity of the eth1 MECI, the lowest
energy S1S0 MECI, before population transfer proceeds.
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Fig. 8.4 Left Projection of the nuclear wavepacket density in the S1 state onto the bond alternation
coordinate and right projection onto the backbone torsion coordinate. The solid black line indicates
the expectation value whereas the dashed line indicates the value of the coordinate at the eth1
MECI [1]—adapted by permission of The Royal Society of Chemistry

8.2.3 Electronic Dynamics

Having discussed the nuclear dynamics, we turn our attention to the electronic char-
acter of the states involved. For the s-trans-dienes, the two lowest excited states are
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Fig. 8.5 Left Projection of the nuclear wavepacket density in the S1 state onto the C = C twist
coordinate and right projection onto the CX2 bend coordinate. The solid black line indicates
the expectation value whereas the dashed line indicates the value of the coordinate at the eth1
MECI [1]—adapted by permission of The Royal Society of Chemistry

close in energy at the Franck-Condon geometry. In the case of s-trans-butadiene, an
ultrafast exchange of electronic character between S1 and S2 takes place within the
first 5 fs subsequent to excitation to the bright state [37]. This exchange of electronic
character is reflected by a change in the transition dipole moment between S0 and
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Fig. 8.6 Histogram of the average of the squares of the transition dipole moments between S0 and
S1 and S2. The histograms have been convoluted by a Gaussian of width 1.0 in the ordinate. The
black lines indicate the average values [1]—reproduced by permission of The Royal Society of
Chemistry

the excited states such that the initially bright S1 state becomes dark, and the initially
dark S2 state becomes bright. The change of character is unambiguous for s-trans-
butadiene. In the case of CPD (and similarly for Me4CPD and Me6CPD), the two
lowest excited states are separated to a larger extent at the Franck-Condon geometry
with a calculated energy splitting of 1.05 eV. At this geometry, the diabatic labels
V1 and V2 were unambiguously assigned to the adiabatic states in Sect. 8.1 based on
the electronic configurations. The transition dipole moments to S0, calculated to be
2.81 D in the case of S1 and 0.29 D in the case of S2, also reflect this character of
the states. Figure 8.6 exhibits the time evolution of the ratio of the squared transition
dipole moments. For all three molecules, the ratio starts out >10 (the value is ∼100
at the Franck-Condon geometry), however, it drops within the first 10 fs to ∼3. Thus,
it is apparent that there is a mixing of the electronic character, and an unambiguous
assignment to bright and dark (or equivalently to V1 and V2) of the two adiabatic
states S1 and S2 is not possible at later times. The change in character of the adiabatic
states is closely related to motion in the backbone torsion coordinate.
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It has been observed for s-trans-butadiene that charge-transfer states play an
essential role in the excited state dynamics [37]. In s-trans-butadiene, charge sepa-
ration occurs on the S1 state and is preceded by twisting of a single methylene unit
akin to the twist of a single double bond in the cyclopentadienes. However, in the
latter group of molecules, the torsional motion is frustrated due to the ring structure,
and the twist does not reach the extremum corresponding to a complete 90◦ twist as
is observed in s-trans-butadiene. As a consequence, a significantly smaller degree
of charge separation across the double bonds is observed in the cyclopentadienes.

8.3 The Excited State Reaction Mechanism

Having established the nuclear dynamics leading to the non-adiabatic transition
between S1 and S0 and the electronic character of the states involved, a complete
picture of the excited state dynamics emerges. The dynamics are schematically sum-
marized in Fig. 8.7. At the Franck-Condon geometry, the S1 and S2 states can clearly
be identified as the bright V1 and dark V2 states respectively. Subsequent to excitation,
initial nuclear motion primarily along in-plane modes, but to some extent also along
out-of-plane modes, takes the molecules out of the Franck-Condon region in ∼25 fs.
As a consequence of this nuclear motion, the electronic character of the excited states
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Fig. 8.7 Schematic summary of the excited state dynamics in the cyclopentadienes following
excitation to S1. 1 The initial dynamics taking the molecules out of the Franck-Condon region
primarily involve motion along in-plane modes, but in particular for CPD, out-of-plane motion also
occurs. This motion leads to a mixing of the electronic state character of S1 and S2. 2 Subsequent
motion primarily along out-of-plane modes takes the molecules to the vicinity of the S1S0 MECIs
wherefrom population transfer back to S0 proceeds. A slight bifurcation between the two ethylene-
like MECIs is observed, and in the case of CPD, a very small part of the population transfer can also
be associated with the dis MECI [1]—adapted by permission of The Royal Society of Chemistry
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mixes significantly, and an unambiguous assignment of diabatic labels to the adia-
batic states S1 and S2 is no longer possible. After the initial nuclear motion, primarily
out-of-plane motion takes the molecules towards the S1S0 MECI geometries. This
motion involves twisting of the double bonds very similar to what is observed for
s-trans-butadiene and the smaller ethylene. Although the two ethylene-like S1S0
MECIs, to which most population transfer can be assigned, primarily result from
twisting of only one double bond, the spawning geometries reveal a slight disro-
tatory mechanism where some twisting also occurs around the other double bond.
For the spawning geometries, the difference in twist of the two double bonds falls
somewhere in between that for the ethylene-like S1S0 MECIs and the dis MECI.
The out-of-plane motion is slowed down in Me4CPD and Me6CPD compared to
CPD due to the inertia of the methyl substituents. This targeted substitution and
the consequential slowdown in the population transfer truly exhibits the localized
nature of the dynamics—the double bond twist is the primary degree of freedom of
importance.

8.4 Time-Resolved Photoelectron Spectra

On the basis of the dynamics simulations, two timescales of importance have been
identified—one timescale during which nuclear motion takes place only on the ini-
tially excited state with the molecule moving away from the Franck-Condon region
and one timescale for the non-adiabatic transfer back to the ground state. By use of
TRPES, two timescales have also been identified in experimental data [45]. To be
able to make a direct comparison to experiment, time-resolved photoelectron spectra
were calculated on the basis of the simulated dynamics. The two lowest cationic states
were included in the calculations, and a Gaussian window function of width 0.10 eV
was used in conjunction with τxc = 160 fs and a probe energy of ωpr = 3.87 eV

unless otherwise specified. The shifts employed were �
(S1,D0)
CPD = −0.46 eV and

�
(S1,D0)
Me4CPD = 0.39.
Figure 8.8 shows a comparison between the calculated and the experimental spec-

trum of CPD. The calculated spectrum is a sum of the spectrum calculated for ioniza-
tion by one probe photon and that for ionization by a photon of twice the frequency
of the probe photon to approximately treat two-probe-photon ionization. For the
calculation of the latter spectrum, the Condon approximation was invoked. The rel-
ative maximum intensities of the one-photon and two-photon spectra were fixed at
20 following experimental findings [45]. Both the calculated and the experimental
spectrum exhibit a band <0.5 eV centered near time zero due to one-photon ioniza-
tion and a broad delayed band due to two-photon ionization. Thus, it is evident that
the present simulation is able to qualitatively reproduce the experimental spectrum,
however, the timescales from the simulation are shorter than those obtained from the
experimental spectrum of 39 and 51 fs [45].

Both bands of the calculated spectrum are observed to originate from ionization
out of the S1 state. The disappearance of the low-energy one-photon band is a con-
sequence of a fast increase in ionization potential from S1 to D0, the ground state of



92 8 The Cyclopentadienes

Fig. 8.8 Time-resolved pho-
toelectron spectra of CPD.
The experimental spectrum,
based on data published in
Ref. [45] and reproduced with
permission, was obtained
using ωpu = 5.19 eV,
ωpr = 3.87 eV, and
τxc = 160 fs. The spectra
have been multiplied by a fac-
tor of 20 in the region above
1.0 eV [1]—Adapted by per-
mission of The Royal Society
of Chemistry. (a) Calculated
spectrum. (b) Experimental
spectrum

(a)

(b)

the cation, when the molecule leaves the Franck-Condon region and slides down the
potential energy surface. It is thus the energetic factor of Eq. (5.14) that leads to the
decay of the low-energy band by effectively closing the one-photon probe window.
Through two-photon ionization, another probe window is open further down the
potential energy surface resulting in the band centered at a kinetic energy of 1.9 eV.
This window stays open longer than the one-photon window until population decay
back to the ground state finally leads to the decay of the band.

To better follow the dynamics, an ideal experiment could be constructed by using
shorter pulses and a higher frequency probe. One possibility is to use ωpr = 6.10 eV
as the absorption coefficient for CPD at this energy is relatively low such as to avoid
probe-induced dynamics in an experiment [42]. The calculated spectrum of CPD
using this probe energy with τxc = 20 fs is exhibited in Fig. 8.9. The appearance
of the spectrum can be rationalized using the schematic in Fig. 8.10. The relatively
narrow wavepacket formed in the S1 state by the excitation process gives rise to an

http://dx.doi.org/10.1007/978-3-319-00386-3_5
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Fig. 8.9 Time-resolved photoelectron spectrum of CPD. The spectrum was calculated using τxc =
20 fs and ωpr = 6.10 eV
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Fig. 8.10 Final scheme for qualitatively explaining the appearance of the time-resolved photoelec-
tron spectra. 1 The narrow wavepacket subsequent to excitation gives rise to an intense band at high
energy, 2 the spreading wavepacket on its way down the potential energy surface gives rise to a diffuse
band at intermediate energies, and 3 recurrences of the wavepacket near the bottom of the S1 potential
energy surface gives rise to an intense band at low energies. Depending on the probe energy and the
ionization potential of the molecule, the ionization process can be cut-off as the wavepacket moves down
the S1 potential energy surface
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Fig. 8.11 Time-resolved
photoelectron spectra of
Me4CPD. The experimental
spectrum, based on data pub-
lished in Ref. [45] and repro-
duced with permission, was
obtained usingωpu = 5.19 eV,
ωpr = 3.87 eV, and
τxc = 160 fs. (a) Calcu-
lated. (b) Experimental

(a)

(b)

intense band between 2.0 and 2.5 eV. On its way down the S1 potential energy surface,
the wavepacket spreads somewhat giving rise to a more diffuse band between 1.0
and 2.0 eV the center of which red-shifts with time. At the bottom of the S1 potential
energy surface near the S1S0 MECIs, recurrences of the wavepacket give rise to
an intense band between 0.0 and 1.0 eV. In this band, reminiscence of vibrational
structure can be observed reflecting the coherent out-of-plane motion of the molecule.

Figure 8.11 shows a comparison between the calculated and experimental spec-
trum of Me4CPD. The features of the calculated spectrum can qualitatively be
explained by the model in Fig. 8.10 similar to the previous spectrum for CPD. The
correspondence between the calculated and experimental spectrum is not as good as
in the case of CPD which could be expected as the calculated spectrum is based on
the electronic structure of CPD and not Me4CPD. In particular, the initial peak at
the onset of excitation is less intense in the experimental spectrum. The discrepancy
between the spectra at energies <0.15 eV is most likely due to the insensitivity of
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the experiment to very low-energy electrons. Similar to the case of CPD, the com-
bined timescales from the simulation are slightly shorter than those obtained from
the experimental spectrum of 68 and 76 fs [45].

8.5 Conclusion

The dynamics of the cyclopentadienes are truly in between those of ethylene and
the poylenes. The initial dynamics following excitation to the S1 state are similar
to the polyenes with a large chance in the bond alternation coordinate in the direction
of the gradient at the Franck-Condon geometry. At longer times, symmetry break-
ing due to out-of-plane motion leads to localization of the dynamics on primarily
one of the ethylene units as the molecule moves towards the ethylene-like coni-
cal intersections connecting S1 with S0. This out-of-plane motion is induced by a
negative curvature along out-of-plane modes at the Franck-Condon geometry. The
non-ergodicity of the dynamics is exhibited by the significant slowdown of the non-
adiabatic population transfer upon methyl substitution which primarily affects the
out-of-plane motion. As the methyl groups are only approximately treated by chang-
ing the mass of the pertinent hydrogens, the slowdown observed in the dynamics is
truly a kinematic effect and cannot be explained by a statistical theory or a change
in the electronic structure.

Although dynamics on the doubly excited V2 state are not directly observed in the
simulations, this state does play a role in the dynamics. The mixing of the electronic
character of the V1 and V2 states in the adiabatic S1 and S2 states, i.e. due to the
coupling between the S1 and S2 states, results in a low-energy seam of conical
intersections between the S1 and S0 states where the former state has partially doubly
excited character. V2 is thus implicitly involved in the ultrafast dynamics observed
in the cyclopentadienes.

The coupled electronic and nuclear dynamics in the cyclopentadienes is exhibited
in the time-resolved photoelectron spectra. However, it is also clear that features in
the spectra which at first glance are attributed to non-adiabatic dynamics are indeed
due to a closing probe window. By using a higher frequency probe, one should be
able to follow the full dynamics on the S1 potential energy surface and more directly
determine a timescale for the S1 → S0 transition from experiment.
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40. A. Sabljić, R. McDiarmid, J. Chem. Phys. 93, 3850–3855 (1990)
41. R. McDiarmid, A. Gedanken, J. Chem. Phys. 95, 2220–2221 (1991)
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Chapter 9
Dithiane

Parts of the results described in text passages and/or figures and tables in this chapter
are adapted with permission from [7]. Copyright 2012 American Chemical Society.

The disulfide bond seemingly represents a case where photochemistry efficiently
competes with energy dissipation by internal conversion. It is well-recognized that
upon the absorption of light a disulfide bond will cleave leaving two free radicals
[1]. This process has been observed to occur on a sub ps timescale [2]. Despite
this photolability, the disulfide bond formed by the oxidation of two cysteine amino
acids is an important factor in determining the tertiary structure of proteins along
with hydrogen bonding and hydrophobic interactions [3]. For the disulfide bond to
prevail, the radicals formed by the bond cleavage must be confined such as to allow
for recombination and thereby reformation of the disulfide bond. In solution, the
solvent shell surrounding radicals formed by the photocleavage of a disulfide bond
has been argued to provide such confinement, but a quantum yield of 30 % is still
observed in some cases [2, 4–6]. In the case of proteins, this raises the question
whether other parameters such as intrinsic cyclic structural motifs in the tertiary
structure could play a decisive role in funneling the disulfide back to the ground state
by internal conversion. We have inhere focused on the cyclic molecule dithiane as
a model compound for such a structural motif, and we will focus on the dynamics
unfolding subsequent to excitation to the S1 state.

9.1 Electronic Structure

The lowest two singlet excited states of dithiane derive from promotion of an electron
from a lonepair at either one of the two sulphur atoms to an antibonding orbital of the
S–S bond. Due to the interaction between the two sulphur atoms, these states are not
degenerate but are split at the Franck-Condon geometry by 1.0 eV according to our
SA-3-CAS(10,8)SCF/6-31G(d,p) calculations. These calculations employ an active

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses, 99
DOI: 10.1007/978-3-319-00386-3_9, © Springer International Publishing Switzerland 2013
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Scheme 9.1 Photolytic cleavage of the S–S bond in dithiane. Adapted with permission from [7].
Copyright 2012 American Chemical Society
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Fig. 9.1 The eight orbitals included in the SA-3-CAS(10,8)SCF calculations in order of increasing
energy. (a) σSC . (b) σSC . (c) σSS . (d) n. (e) n. (f) σ ∗

SS . (g) σ ∗
SC . (h) σ ∗

SC

space of the eight orbitals shown in Fig. 9.1 which includes σ ∗ orbitals to describe
possible S–C and S–S bond breakage (Scheme 9.1).

The linearly interpolated S1 potential energy surface connecting the Franck-
Condon geometry with the S1 minimum reveals no barriers on the very steep surface.
At the S1 minimum, the S–S bond is extended by 1.5–3.6 Å, cf. Fig. 9.2. Thus, without
any opposing force due to confinement, the bond would readily dissociate forming
the diradical species. As the S–S bond elongates, the interaction between the two
sulphur atoms decreases, and the S1 and S2 states become almost degenerate. Near
the minimum of the S1 potential energy surface, we have located a minimum energy
conical intersection (MECI) connecting S1 with the ground state. The geometries of
the S1 minimum and the S1S0 MECI are closely related as only a slight torsion of
the –CH2S• moieties can take one into the other, cf. Fig. 9.3. This proximity of the
two points on the S1 potential energy surface gives rise to the sloped geometry of
the MECI illustrated in Fig. 9.4. Thus, once the molecule starts moving towards the
S1 minimum, the region near the conical intersection will also be visited. If nuclear
motion restricts the molecule to the vicinity of this region of large coupling, the mole-
cule should be able to return to the ground state and reform the S–S bond avoiding
diradical formation. Such nuclear motion is exactly revealed by the data obtained
from time-resolved mass spectrometry (TRMS).
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Fig. 9.2 Adiabatic potential energy surfaces for the three lowest singlet states of dithiane. The
structures have been linearly interpolated in internal coordinates from the S0 minimum to the S1S0
MECI and from the latter to the S1 minimum. Adapted with permission from [7]. Copyright 2012
American Chemical Society

Fig. 9.3 Geometries of dithi-
ane with important structural
parameters indicated. (a) The
normal mode displacement
vector for the lowest fre-
quency vibrational mode is
indicated by arrows on the
lower structure. Adapted with
permission from [7]. Copy-
right 2012 American Chemi-
cal Society. (a) S1 minimum.
(b) S1S0 conical intersection
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9.2 Time-Resolved Mass Spectrometry

The time in the vicinity of the MECI necessary for efficient transfer back to the
ground state is provided by the cyclic structure of the molecule. The timescale for
activating modes that lead to the unfolding of the carbon chain and thereby diradical
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Fig. 9.4 MECI between
the S1 and S0 states in the
branching space of the scaled
derivative coupling and gra-
dient difference vectors. The
intersection is observed to be
sloped with an adjacent local
minimum on the S1 surface
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formation follows that of internal vibrational energy redistribution. This timescale
is generally on the order of several ps and longer giving the molecule amble time to
return to the ground state and reform the S–S bond. Upon excitation to the S1 state,
the elongation of the S–S bond is accompanied by torsion in the carbon backbone
which leads to a scissoring motion of the sulphur atoms. This motion is directly
observed in the temporal evolution of the ion current of the m/z = 55 fragment of
dithiane presented in Fig. 9.5. In the TRMS experiments, dithiane was excited to the
S1 state by a 110 fs pulse at 284 nm and probed at a later time by a 400 nm pulse of
similar time duration.1 When the sulphur atoms are in close proximity, the ionization
of dithiane is enhanced giving rise to a peak in the ion current as a positive charge
on one of the sulphur atoms can be stabilized by the lone pair on the other. When the
sulphur atoms are far a part, this stabilization is absent, and ionization is suppressed
given rise to a trough in the ion current.

The fit to the temporal evolution of the ion current reveals that the S1 minimum
is reached within <200 fs as given by the initial 177 ± 17 fs decay corresponding
to the S–S bond stretch. The oscillatory component of the signal has a period of
411 ± 27 fs which is nearly identical to the period of the lowest vibrational mode in
the S1 minimum as calculated by a harmonic normal mode analysis to be 416 fs. This
mode involves torsion in the carbon backbone which results in the –CH2S• moieties
moving relative to one another as indicated in Fig. 9.3a. This is exactly the motion
that connects the S1 minimum with the MECI, and it can thereby induce the transition
back to the ground state. This transition is also reflected in the experimental signal
by the second decay component with a fitted lifetime of 2.75 ± 0.23 ps.

1 The author did not take part in conducting the experiments.
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Fig. 9.5 Temporal evolution of the ion current for the m/z = 55 fragment of dithiane (◦) along with
the modulated sequential biexponential fit (pink). Also shown is the individual components of the
fit: first exponential decay (purple), second exponential decay (green), and oscillatory component
(blue). Adapted with permission from [7]. Copyright 2012 American Chemical Society

9.3 Conclusion

The reformation of the S–S bond in excited dithiane is the result of a non-ergodic
process. Only two degrees of freedom actively take part in the process: the S–S bond
stretch and torsion in the carbon backbone giving rise to a scissoring motion of the
–CH2S• moieties. The bond reformation prevails as motion in these two degrees
of freedom actively takes the molecule to a region of large interaction between S1
and S0. Hereby, the internal conversion process can effectively compete with internal
vibrational energy redistribution to degrees of freedom which could lead to unfolding
of the ring and ultimately result in diradical formation. The cyclic structural motif of
dithiane ultimately protects the molecule from bond breakage, and a similar effect
is expected to be at play in proteins.
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Chapter 10
Summarizing Discussion

The work presented in this thesis exhibit the complexity of the interplay between
nuclear dynamics and electronic transitions. The main lesson is that internal conver-
sion in small polyatomic molecules is truly a dynamical process. Specific nuclear
motion is instrumental in directing the system towards configurations where cou-
pling to other electronic states is large and wherefrom population transfer can
proceed. This in turn encompasses the concept of the dynamics being non-ergodic
or non-statistical—the observation of coherent dynamics entails that the timescale
of internal conversion is shorter than that of internal vibrational energy redistribu-
tion. This direct observation of non-ergodic behavior is an immediate consequence
of the preparation of the system by a femtosecond laser pulse resulting in an initial
localization in space and energy. It should be emphasized that the non-ergodicity is a
function of the molecule and not of the activation process—the excited state dynam-
ics of the molecules under investigation are inherently non-ergodic irrespective of
the preparation process. We observed different effects of the non-ergodic behavior
in the different molecular systems under investigation.

From the experimental study on the cycloketones, we observed that the timescale
for the (n, 3s) → (n,π∗) internal conversion ranges over more than an order of
magnitude from 0.37 ps in 2-methylcyclobutanone to 9.67 ps in cyclohexanone. It was
revealed from the experimental data that the nuclear dynamics leading to this internal
conversion are localized in real space in proximity of the carbonyl chromophore.
Alkyl substitution and change of the size of the ring, which locally affects the structure
in vicinity of the carbonyl chromophore, both have strong effects on the rate due
to this locality. Effectively, these structural changes affect the magnitude of the
coupling between the electronic states by determining the region of configuration
space available to the molecule on the (n, 3s) state. A larger available configuration
space allows the molecule to visit regions of larger coupling resulting in a faster rate
of internal conversion. The effects of the structural differences can be quantified by
primarily two parameters: the frequency of the central ring-puckering vibration and
the energy difference between the Franck-Condon and equilibrium geometries in the
(n, 3s) state. A lower frequency and a larger energy difference result in a faster rate

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses, 107
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of transition. On the other hand, an increase in the size of phase space and the density
of vibrational states as obtained by alkyl substitution away from the carbonyl group
does not significantly affect the rate of internal conversion. This cements the non-
ergodicity of the internal conversion process revealed by the observation of coherent
vibrational motion—the molecule does not explore the full phase space in the excited
state before population transfer proceeds. Had this been the case, these substitutions
would have had a much larger effect on the rate of transition.

The importance of low-frequency modes was to some extent confirmed by the
wavepacket simulations on cyclobutanone and cyclopentanone. More importantly,
the simulations revealed the importance of point group symmetry. For cyclobutanone,
internal conversion is a direct process where motion in Franck-Condon active coor-
dinates mediates a prompt population transfer. In cyclopentanone, the point group
symmetry dictates that internal conversion is an indirect process where internal vibra-
tional energy redistribution is a bottleneck for activating coupling modes. Conse-
quently, the component of prompt population transfer in cyclopentanone is very
small compared to the component of delayed population transfer. However, as the
experimental timescale for population transfer in cyclopentanone is not reproduced
by the simulations, it is very conceivable that the five mode model is not sufficient
in this case to fully describe the internal conversion process.

Similar to the case of the cycloketones, coherent dynamics were also observed
in the cyclopentadienes on the timescale of the internal conversion process which
ranges by a factor of approximately 3 from ∼50 fs in cyclopentadiene to ∼150 fs in
hexamethylcyclopentadiene. Whereas the timescale differences in the cycloketones
in essence is a consequence of a difference in the magnitude of the coupling between
the electronic states, the timescale differences for the cyclopentadienes result from
differences in the timescale for reaching the configuration where the coupling is
large. As also observed for the cycloketones, the nuclear dynamics leading to internal
conversion in the cyclopentadienes are localized in real space in this case in the bond
alternation and double bond twist coordinates. The latter motion takes the molecules
from a planar configuration, where the coupling to the ground state is very low, to
the vicinity of the conical intersection seam, where the coupling is very large. The
calculations do not include the extra degrees of freedom of the methyl groups in
Me4CPD and Me6CPD and the differing timescales are truly a result of a kinematic
effect and not a result of a change in the size of phase space. Once again, phase space
is open to the molecule but only a small region is accessed leading to the internal
conversion exhibiting a non-ergodic nature.

The ultrafast internal conversion in the cyclopentadienes results from the inter-
action between the dark doubly excited state and the bright singly excited state. As
the molecule leaves the Franck-Condon region on the steep potential energy surface
along out-of-plane modes, it enters a region on the surface where mixing of singly
and doubly excited character in the two lowest excited valence states occurs. The
nuclear motion is reflected by a decaying band in the time-resolved photoelectron
spectra which resembles the appearance of a band decaying due to a non-adiabatic
transition. However, the decay is indeed a consequence of the closing of the probe
window due to the rapidly increasing ionization potential. The full extent of the
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coherent dynamics are revealed in the spectrum if a higher frequency probe is
employed as the wavepacket can then be followed on the entire excited-state potential
energy surface.

In dithiane, the reduced-space dynamics are reflected in the conservation of the
disulfide bond following light absorption. The significant stretching of the disulfide
bond upon excitation leads the molecule straight towards the minimum of the excited-
state potential energy surface in the region of the conical intersection. Whereas
the stretching motion initially induces the coupling to the ground state, it is the
accompanying coherent backbone torsion which ensures recurrent motion between
the minimum and the conical intersection allowing amble time for population transfer
to proceed. Had a larger region of phase space been sampled during the process, the
unfolding of the carbon chain would have led to the formation of the diradical. In
addition, had the coupling between the excited and ground states been significantly
smaller, a prolonged lifetime in the excited state could have allowed for internal
vibrational energy redistribution to proceed. Thereby, the vibrational modes which
lead to unfolding of the chain would have been activated and diradical formation
would again prevail. That this is not observed is a testament to the non-ergodic
nature of the process.

In the introduction, we reflected on the possibility of identifying the main para-
meters that determine the timescale for a given internal conversion process. In the
Born-Oppenheimer approximation, it is ultimately the electronic structure that deter-
mines the potential energy surfaces on which the nuclear dynamics take place, and
one could therefore argue that this is the main parameter. On the other hand, the
non-adiabatic couplings leading to the breakdown of the approximation are due to
the nuclear kinetic energy operator highlighting the central role of nuclear dynamics
in their own right. From one perspective, the electronic structure defines the potential
energy surfaces, but it is the nuclear dynamics that determine which parts of these
surfaces are visited and thus of importance for electronic state-transfer processes. A
common trait of the three types of molecules investigated in our work is the involve-
ment of very few degrees of freedom in the nuclear dynamics that lead to internal
conversion. The activation and frequency of as well as energy release into these ulti-
mately determine on what timescale and to what extent the region of the potential
energy surface with large coupling to other states is visited and thereby the timescale
for internal conversion. This connection is evidenced by the significant effect of
selective modification of these degrees of freedom on the rate of internal conversion
observed in our work. The localization of the dynamics furthermore allows for a
connection between nuclear dynamics and structural elements. In the cycloketones,
the main structural element of importance is the C-CO-C moiety, in the cyclopentadi-
enes it is the double bonds, and in dithiane it is the disulfide bond. In essence, simply
from a consideration of molecular structure, the relative rates of internal conversion
in related molecules can to some extent be predicted. We hope that these concepts
will provide a useful basis on which to undertake and discuss future work.
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Supporting Information for Chapter 7

A.1 Diffuse Basis Functions

The exponents of the diffuse functions are given in Table A.1 [1]. Tables A.2 and
A.3 collect the contraction coefficients for three sets of diffuse functions for
cyclobutanone and cyclopentanone determined following the prescription in
Ref. [2].

Table A.1 Exponents of the primitive basis functions for three values of angular momentum l
and eight values of the principal quantum number n

n l ¼ 0 (s) l ¼ 1 (p) l ¼ 2 (d)

2.0 0.02462393 0.04233528 0.06054020
2.5 0.01125334 0.01925421 0.02744569
3.0 0.00585838 0.00998821 0.01420440
3.5 0.00334597 0.00568936 0.00807659
4.0 0.00204842 0.00347568 0.00492719
4.5 0.00132364 0.00224206 0.00317481
5.0 0.00089310 0.00151064 0.00213712
5.5 0.00062431 0.00105475 0.00149102
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Table A.2 Contraction coefficients for three sets of diffuse functions for cyclobutanone

n l ¼ 0 (s)

2.0 0.18757690 -0.66901176 0.84247489
2.5 1.02138077 -0.78473105 0.22173456
3.0 -0.43425367 1.16965432 -2.06764134
3.5 0.36093788 0.54692212 -0.48159425
4.0 -0.02660994 -0.06342005 1.66260101
4.5 -0.28561643 0.02697933 0.84767931
5.0 0.29491969 0.02931525 -0.64237097
5.5 -0.10167962 -0.01953191 0.24267274
n l ¼ 1 (p)
2.0 0.28733454 -0.51482697 0.51694331
2.5 0.59336328 -0.44690850 0.16166798
3.0 0.01309852 0.66233366 -1.02008576
3.5 0.43319267 -0.28557390 0.52617583
4.0 -0.52217482 1.71767160 -2.19954435
4.5 0.49010121 -1.54212007 3.90540389
5.0 -0.28532868 0.97402587 -1.77209367
5.5 0.07604473 -0.26767560 0.57951653
n l ¼ 2 (d)
2.0 0.13417940 -0.21298673 0.23409036
2.5 0.26292179 -0.24606889 0.19986112
3.0 0.36090055 -0.23334084 0.05457146
3.5 0.32203482 -0.06405318 0.00085129
4.0 0.07999795 0.47688100 -0.96575675
4.5 -0.00353851 0.50476530 0.07905963
5.0 0.02622863 0.02637718 0.11480124
5.5 -0.01171333 0.07072576 1.02575722
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A.2 Equilibrium Geometries

The ground, ðn; p�Þ, and ðn; 3sÞ equilibrium geometries of cyclobutanone and
cyclopentanone are given in Tables A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11. The
ground state geometries were obtained by MP2 and CCSD with the cc-pVTZ basis
set in GAUSSIAN 03 and GAUSSIAN 09 [3, 4]. The excited state geometries were
obtained by EOM-CCSD using the extended cc-pVTZ+1s1p1d basis set in CFOUR

[5]. In the tables, X indicates the position of the ghost atom onto which the diffuse
functions were placed. The position of the ghost atom was initially taken as the
charge centroid of the lowest cationic state determined from atom-centered LoProp
charges [6] calculated in MOLCAS [7]. Due to the very extended nature of these
basis functions, the exact placement is not critical. Another choice is to place the
functions on the carbon atom of the carbonyl group which was employed when
calculating the harmonic frequencies at the equilibrium geometries of the excited
states.

Table A.3 Contraction coefficients for three sets of diffuse functions for cyclopentanone

n l ¼ 0 (s)

2.0 0.00418467 -0.38848697 0.55908927
2.5 1.18993678 -1.26254802 0.90072528
3.0 -0.46431864 1.24271128 -2.21416585
3.5 0.41221310 0.59751973 -0.98671842
4.0 -0.02661507 -0.01247047 1.70203509
4.5 -0.33434677 0.09202366 1.06594946
5.0 0.34380467 -0.04535688 -0.64214518
5.5 -0.11840101 0.00656561 0.24234048
n l ¼ 1 (p)
2.0 0.27725230 -0.61352243 0.65451483
2.5 0.53090715 -0.27833537 -0.10891805
3.0 0.12051661 0.42258781 -0.73894617
3.5 0.35196052 0.00376434 0.12462769
4.0 -0.41598528 1.34057797 -1.44956674
4.5 0.39835946 -1.18216962 3.11862406
5.0 -0.23366103 0.75511770 -1.31887282
5.5 0.06236085 -0.20643878 0.43609035
n l ¼ 2 (d)
2.0 0.16439619 -0.32105070 0.35040189
2.5 0.27597911 -0.27560551 0.19803434
3.0 0.33584271 -0.14156831 -0.09950192
3.5 0.31715460 0.01710969 -0.16583083
4.0 0.08042406 0.47698256 -0.78001504
4.5 -0.00479743 0.43481886 0.20066895
5.0 0.02559397 -0.01114904 0.44671880
5.5 -0.01121493 0.06198461 0.62692971
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Table A.5 Ground state equilibrium geometry of cyclobutanone (in Å) obtained at the CCSD/cc-
pVTZ level of theory

Atom x y z

C 0.143957 -1.456543 0.000000
C -0.091246 -0.386572 1.104995
C -0.034336 0.674327 0.000000
C -0.091246 -0.386572 -1.104995
H 1.164767 -1.831344 0.000000
H -0.544168 -2.296732 0.000000
H 0.648899 -0.291705 1.896418
H -1.086189 -0.436035 1.548271
H 0.648899 -0.291705 -1.896418
H -1.086189 -0.436035 -1.548271
O 0.086389 1.864433 0.000000

Table A.6 ðn;p�Þ state equilibrium geometry of cyclobutanone (in Å) obtained at the EOM-
CCSD/cc-pVTZ+1s1p1d level of theory

Atom x y z

C -1.496048 -0.012062 0.009687
C -0.401706 -1.099674 0.102231
C 0.640057 -0.009234 -0.259848
C -0.404282 1.077982 0.104441
H -1.993152 -0.011982 -0.956738
H -2.240936 -0.013703 0.799987
H -0.444319 -1.945041 -0.580421
H -0.235500 -1.449477 1.125215
H -0.448620 1.924920 -0.576164
H -0.238979 1.425844 1.128234
O 1.868130 -0.008113 0.099919
X -0.042915 0.007156 -0.020238

Table A.4 Ground state equilibrium geometry of cyclobutanone (in Å) obtained at the MP2/cc-
pVTZ level of theory

Atom x y z

C -0.239133 -1.425773 0.000000
C -0.239133 -0.334089 1.095225
C 0.150868 0.650486 0.000000
C -0.239133 -0.334089 -1.095225
H 0.686707 -1.987113 0.000000
H -1.076181 -2.109987 0.000000
H 0.434302 -0.426955 1.937860
H -1.241142 -0.114128 1.452686
H 0.434302 -0.426955 -1.937860
H -1.241142 -0.114128 -1.452686
O 0.675294 1.730007 0.000000
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Table A.7 ðn; 3sÞ state equilibrium geometry of cyclobutanone (in Å) obtained at the EOM-
CCSD/cc-pVTZ+1s1p1d level of theory

Atom x y z

C -1.575325 -0.015080 -0.105112
C -0.492191 -1.096422 -0.094997
C 0.690366 -0.014060 -0.098159
C -0.493084 1.067216 -0.105908
H -2.181066 -0.019842 -1.003957
H -2.188393 -0.010861 0.788803
H -0.347224 -1.668302 -1.015431
H -0.352799 -1.654193 0.835027
H -0.348704 1.629701 -1.032218
H -0.354196 1.634555 0.818391
O 1.850375 -0.013500 -0.096769
X -0.013362 0.010057 0.070121

Table A.8 Ground state equilibrium geometry of cyclopentanone (in Å) obtained at the MP2/cc-
pVTZ level of theory

Atom x y z

C 0.000000 0.764737 -1.362297
C 0.000000 -0.764737 -1.362297
C 0.524110 -1.111679 0.022999
C 0.000000 0.000000 0.911689
C -0.524110 1.111679 0.022999
H 1.021254 1.123931 -1.469389
H -0.587587 1.190079 -2.167216
H 0.587587 -1.190079 -2.167216
H -1.021254 -1.123931 -1.469389
H 0.242093 -2.084007 0.407610
H 1.611593 -1.047251 0.047856
H -1.611593 1.047251 0.047856
H -0.242093 2.084007 0.407610
O 0.000000 0.000000 2.120465

Table A.9 Ground state equilibrium geometry of cyclopentanone (in Å) obtained at the CCSD/
cc-pVTZ level of theory

Atom x y z

C -0.011438 0.769497 -1.369003
C 0.011438 -0.769497 -1.369003
C 0.524246 -1.122169 0.030365
C 0.000000 0.000000 0.922887
C -0.524246 1.122169 0.030365
H 1.004602 1.149409 -1.498593
H -0.623485 1.183657 -2.167885
H 0.623485 -1.183657 -2.167885

(continued)
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Table A.10 ðn;p�Þ state equilibrium geometry of cyclopentanone (in Å) obtained at the EOM-
CCSD/cc-pVTZ+1s1p1d level of theory

Atom x y z

C -0.800227 -0.021668 0.001795
C 0.104574 -1.280585 0.128683
C 1.491776 -0.744107 -0.231496
C 1.489495 0.709750 0.232505
C 0.099336 1.241072 -0.124127
H -0.307791 -2.080639 -0.486044
H -0.002155 -1.524864 1.192974
H 2.248377 -1.349248 0.270790
H 1.646790 -0.811074 -1.306170
H 2.242618 1.317694 -0.271574
H 1.646839 0.777162 1.306818
H -0.010451 1.487949 -1.187468
H -0.315304 2.037658 0.493653
O -1.982671 -0.024376 0.000544
X -0.041116 0.016828 -0.001101

Table A.11 ðn; 3sÞ state equilibrium geometry of cyclopentanone (in Å) obtained at the EOM-
CCSD/cc-pVTZ+1s1p1d level of theory

Atom x y z

C -0.757421 -0.060563 -0.009309
C 0.103972 -1.267442 0.327197
C 1.504280 -0.745617 -0.014206
C 1.473168 0.710578 0.461005
C 0.062690 1.224607 0.109635
H -0.191038 -2.154263 -0.231781
H 0.016117 -1.497068 1.398130
H 2.288573 -1.330190 0.465368
H 1.658561 -0.790574 -1.093230
H 2.257397 1.321469 0.015196
H 1.605373 0.738898 1.543802
H 0.037973 1.772128 -0.834340
H -0.350965 1.880399 0.879873
O -2.013939 -0.046432 0.330740
X -0.038068 0.024636 -0.179418

Table A.9 (continued)

Atom x y z

H -1.004602 -1.149409 -1.498593
H 0.219765 -2.095056 0.409259
H 1.616322 -1.078547 0.066445
H -1.616322 1.078547 0.066445
H -0.219765 2.095056 0.409259
O 0.000000 0.000000 2.127219
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A.3 Parameters of the Vibronic Coupling Hamiltonian

The parameters of the vibronic coupling Hamiltonian obtained from fitting to
potential energy surfaces calculated at the EOM-CCSD/cc-pVTZ+1s1p1d level of
theory are given in Tables A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19, A.20,
A.21 for cyclobutanone and Tables A.22, A.23, A.24, A.25, A.26, A.27, A.28,
A.29, A.30, A.31 for cyclopentanone. The electronic labels v;w ¼ 1; 2; 3; 4; 5
correspond to the ground, ðn; p�Þ, ðn; 3sÞ, ðn; 3pÞ, and ground cationic states
respectively. The labels for the nuclear degrees of freedom j; j0 ¼ 1; 2; 7; 12; 21 for
cyclobutanone and 1; 3; 8; 16; 28 for cyclopentanone. These labels correspond to
the ring-puckering, C=O out-of-plane bend (carbonyl pyramidalization), symmetric
C–CO–C stretch, asymmetric C–CO–C stretch, and C=O stretch respectively.

A.3.1 Cyclobutanone

Table A.12 Vibrational frequencies xj (in eV) for the normal modes of cyclobutanone

j 1 2 7 12 21

xj 0.0141 0.0501 0.1102 0.1373 0.2300

Table A.13 On-diagonal constants EðvÞ (in eV) for the five states of cyclobutanone

v 1 2 3 4 5

EðvÞ 0.0000 4.4654 6.5970 7.1847 9.5254

Table A.14 Parameters for the Morse potential of the C=O stretch mode for the five states of
cyclobutanone

v 1 2 3 4 5

DðvÞ21 /eV 28.1696 19.4099 7.0043 4.5790 17.7349

aðvÞ21
-0.0651 -0.0657 -0.1029 -0.1167 -0.0753

QðvÞ21;0
-0.1140 -1.6670 0.3191 -0.0009 0.2736

EðvÞ0 /eV -0.0016 -0.2598 -0.0073 0.0000 -0.0074

Table A.15 On-diagonal linear coupling constants bðvÞj (in eV) for the normal modes of
cyclobutanone

j bð1Þj bð2Þj bð3Þj bð4Þj bð5Þj

1 0.0052 0.0653 0.0169 -0.0179 0.0075
2 -0.0027 -0.0074 -0.0453 -0.0096 -0.0016
7 -0.0090 -0.0024 0.0189 0.0092 0.0106

12 � � � � � � � � � � � � � � �
21 � � � � � � � � � � � � � � �
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Table A.16 On-diagonal bilinear coupling constants cðvÞjj0 (in eV) for the normal modes of
cyclobutanone

1 2 7 12 21

cð1Þjj0

1 0.0744 -0.0094 -0.0057 � � � -0.0471
2 -0.0094 0.0451 -0.0169 � � � -0.0493
7 -0.0057 -0.0169 0.0092 � � � 0.0134

12 � � � � � � � � � 0.0076 � � �
21 -0.0470 -0.0493 0.0134 � � � � � �

cð2Þjj0

1 0.0948 -0.0336 -0.0124 � � � -0.0639
2 -0.0336 0.0115 -0.0203 � � � -0.0532
7 -0.0124 -0.0203 0.0070 � � � 0.0264

12 � � � � � � � � � -0.0462 � � �
21 -0.0639 -0.0532 0.0264 � � � � � �
cð3Þjj0

1 0.0900 -0.0391 -0.0161 � � � -0.0308
2 -0.0391 0.0478 -0.0192 � � � -0.0323
7 -0.0161 -0.0192 0.0084 � � � 0.0369

12 � � � � � � � � � -0.0462 � � �
21 -0.0308 -0.0323 0.0369 � � � � � �

cð4Þjj0

1 0.0429 -0.0499 0.0081 � � � -0.0497
2 -0.0499 0.0401 -0.0265 � � � -0.0467
7 0.0081 -0.0265 -0.0264 � � � 0.0253

12 � � � � � � � � � -0.0492 � � �
21 -0.0497 -0.0467 0.0253 � � � � � �
cð5Þjj0

1 0.0851 -0.0159 -0.0110 � � � -0.0491
2 -0.0159 0.0525 -0.0210 � � � -0.0425
7 -0.0110 -0.0210 0.0018 � � � 0.0191

12 � � � � � � � � � -0.0479 � � �
21 -0.0491 -0.0425 0.0191 � � � -0.0288
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Table A.17 On-diagonal linear-quadratic coupling constants iðvÞjj0 (in eV) for the normal modes of
cyclobutanone

ið1Þjj0
12 22 72 122 212

1 0.0085 � � � � � � � � � � � �
2 -0.0047 -0.0038 � � � 0.0024 � � �
7 -0.0037 -0.0028 -0.0027 -0.0069 � � �

12 � � � � � � � � � � � � � � �
21 -0.0192 -0.0181 -0.0016 -0.0177 � � �

ið2Þjj0

1 0.0004 0.0128 0.0082 -0.0011 0.0007
2 -0.0126 0.0032 � � � 0.0033 -0.0052
7 -0.0108 -0.0001 -0.0031 -0.0079 -0.0007

12 � � � � � � � � � � � � � � �
21 -0.0198 -0.0140 � � � -0.0220 -0.0016

ið3Þjj0

1 0.0095 0.0010 -0.0003 0.0001 0.0123
2 -0.0062 0.0039 -0.0025 0.0020 -0.0025
7 -0.0060 � � � -0.0029 -0.0076 -0.0009

12 � � � � � � � � � � � � � � �
21 -0.0240 -0.0058 0.0012 -0.0174 -0.0025

ið4Þjj0

1 0.0039 0.0003 -0.0012 0.0019 0.0008
2 -0.0016 -0.0008 � � � 0.0003 -0.0116
7 0.0024 0.0004 -0.0055 -0.0039 0.0001

12 � � � � � � � � � � � � � � �
21 -0.0113 0.0022 0.0021 -0.0176 -0.0025

ið5Þjj0

1 0.0075 � � � � � � 0.0002 � � �
2 -0.0046 -0.0051 � � � 0.0019 � � �
7 -0.0057 -0.0037 -0.0008 -0.0084 � � �

12 � � � � � � � � � � � � � � �
21 -0.0164 -0.0165 -0.0007 -0.0199 � � �

Table A.18 On-diagonal quartic coupling constants �
ðvÞ
j (in eV) for the normal modes of

cyclobutanone

j �
ð1Þ
j �

ð2Þ
j �

ð3Þ
j �

ð4Þ
j �

ð5Þ
j

1 0.0344 0.0308 0.0219 0.0315 0.0324
2 0.0082 0.0070 0.0018 0.0034 0.0079
7 0.0003 � � � -0.0015 0.0004 0.0006

12 0.0005 0.0017 0.0017 -0.0001 0.0029
21 � � � � � � � � � � � � � � �
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Table A.19 Off-diagonal linear coupling constants kðv;wÞj (in eV) for the normal modes of
cyclobutanone

j kð2;3Þj kð2;4Þj kð3;4Þj

1 0.0693 0.2284 0.0024
2 0.2251 0.1194 -0.0183
7 -0.0287 -0.0678 -0.0448

12 � � � � � � � � �
21 -0.0663 -0.0316 -0.0025

Table A.20 Off-diagonal bilinear coupling constants lðv;wÞjj0 (in eV) for the normal modes of
cyclobutanone

lð2;3Þjj0
1 2 7 12 21

1 -0.0375 0.0342 0.0344 � � � 0.0271
2 0.0342 -0.0043 -0.0085 � � � 0.0143
7 0.0344 -0.0085 0.0025 � � � 0.0148

12 � � � � � � � � � -0.0007 � � �
21 0.0271 0.0143 0.0148 � � � -0.0154

lð2;4Þjj0

1 0.0116 -0.0019 -0.0090 � � � 0.0009
2 -0.0019 -0.0042 0.0051 � � � 0.0092
7 -0.0090 0.0051 0.0002 � � � -0.0010

12 � � � � � � � � � -0.0023 � � �
21 0.0009 0.0092 -0.0010 � � � 0.0038

lð3;4Þjj0

1 -0.0011 -0.0072 -0.0013 � � � -0.0056
2 -0.0072 -0.0059 0.0033 � � � 0.0082
7 -0.0013 0.0033 -0.0008 � � � -0.0093

12 � � � � � � � � � 0.0008 � � �
21 -0.0056 0.0082 -0.0093 � � � 0.0093
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A.3.2 Cyclopentanone

Table A.21 Off-diagonal linear-quadratic coupling constants gðv;wÞjj0 (in eV) for the normal modes
of cyclobutanone

gð2;3Þjj0
12 22 72 122 212

1 -0.0033 � � � � � � -0.0005 0.0001
2 -0.0022 -0.0109 0.0021 -0.0007 � � �
7 -0.0018 -0.0025 0.0003 � � � 0.0014

12 � � � � � � � � � � � � � � �
21 0.0003 -0.0002 0.0025 0.0050 -0.0019

gð2;4Þjj0

1 -0.0113 � � � � � � -0.0014 � � �
2 -0.0072 -0.0081 � � � -0.0011 � � �
7 0.0026 0.0012 0.0027 -0.0005 � � �

21 � � � � � � � � � � � � � � �
21 -0.0073 -0.0023 0.0015 0.0002 0.0003

gð3;4Þjj0

1 0.0057 � � � � � � -0.0007 � � �
2 -0.0034 0.0033 � � � -0.0013 � � �
7 -0.0016 0.0009 0.0017 0.0001

12 � � � � � � � � � � � � � � �
21 -0.0044 -0.0024 -0.0016 -0.0003 0.0008

Table A.22 Vibrational frequencies xj (in eV) for the normal modes of cyclopentanone

j 1 3 8 16 28

xj 0.0121 0.0561 0.1038 0.1473 0.2241

Table A.23 On-diagonal constants EðvÞ (in eV) for the five states of cyclopentanone

v 1 2 3 4 5

EðvÞ 0.0000 4.3500 6.4804 7.0063 9.2977
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Table A.25 On-diagonal linear coupling constants bðvÞj (in eV) for the normal modes of
cyclopentanone

j bð1Þj bð2Þj bð3Þj bð4Þj bð5Þj

1 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
8 -0.0288 -0.0445 -0.0543 -0.0543 -0.0644

16 � � � � � � � � � � � � � � �
28 � � � � � � � � � � � � � � �

Table A.24 Parameters for the Morse potential of the C=O stretch mode for the five states of
cyclopentanone

v 1 2 3 4 5

DðvÞ28 /eV 40.8297 31.0856 6.7409 5.1947 18.3302

aðvÞ28
-0.0478 -0.0468 -0.0988 -0.1038 -0.0673

QðvÞ28;0
-0.1677 -1.9098 0.3899 0.4137 0.3126

EðvÞ0 /eV -0.0026 -0.2718 -0.0096 -0.0092 -0.0079

Table A.26 On-diagonal bilinear coupling constants cðvÞjj0 (in eV) for the normal modes of
cyclopentanone

cð1Þjj0
1 3 8 16 28

1 0.0350 0.0119 � � � 0.0074 � � �
3 0.0119 0.0183 � � � -0.0108 � � �
8 � � � � � � 0.0175 � � � 0.0067

16 0.0074 -0.0109 � � � 0.0103 � � �
28 � � � � � � 0.0067 � � � � � �
cð2Þjj0

1 0.0049 -0.0214 � � � -0.0247 � � �
3 -0.0214 -0.0372 � � � 0.0196 � � �
8 � � � � � � 0.0196 � � � 0.0034

16 -0.0247 0.0196 � � � 0.0242 � � �
28 � � � � � � 0.0034 � � � � � �
cð3Þjj0

1 0.0447 0.0109 � � � 0.0185 � � �
3 0.0109 0.0139 � � � -0.0107 � � �
8 � � � � � � 0.0046 � � � -0.0054

16 0.0185 -0.0107 � � � -0.0713 � � �
28 � � � � � � -0.0054 � � � � � �
cð4Þjj0

1 0.0101 0.0135 � � � 0.0189 � � �
3 0.0135 0.0123 � � � -0.0053 � � �
8 � � � � � � -0.0012 � � � -0.0047

16 0.0189 -0.0053 � � � -0.0358 � � �
(continued)
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Table A.26 (continued)

cð1Þjj0
1 3 8 16 28

28 � � � � � � -0.0047 � � � � � �
cð5Þjj0

1 0.0220 0.0194 � � � 0.0077 � � �
3 0.0194 0.0055 � � � 0.0018 � � �
8 � � � � � � 0.0085 � � � 0.0010

16 0.0077 0.0018 � � � -0.0323 � � �
28 � � � � � � 0.0010 � � � -0.0581

Table A.27 On-diagonal linear-quadratic coupling constants iðvÞjj0 (in eV) for the normal modes of
cyclopentanone

ið1Þjj0
12 32 82 162 282

1 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
8 0.0056 0.0021 -0.0096 -0.0073 -0.0012

16 � � � � � � � � � � � � � � �
28 -0.0230 -0.0048 -0.0020 -0.0079 � � �
ið2Þjj0

1 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
8 0.0077 0.0045 -0.0082 -0.0018 � � �

16 � � � � � � � � � � � � � � �
28 -0.0169 -0.0044 � � � -0.0109 � � �
ið3Þjj0

1 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
8 0.0100 0.0028 -0.0089 -0.0077 � � �

16 � � � � � � � � � � � � � � �
28 -0.0122 -0.0010 � � � � � � � � �
ið4Þjj0

1 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
8 0.0049 0.0042 -0.0101 -0.0074 � � �

16 � � � � � � � � � � � � � � �
28 -0.0087 0.0022 � � � -0.0086 � � �
ið5Þjj0

1 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
8 0.0071 0.0030 -0.0081 � � � 0.0015

16 � � � � � � � � � � � � � � �
28 -0.0230 -0.0036 0.0003 -0.0088 � � �
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Table A.28 On-diagonal quartic coupling constants �
ðvÞ
j (in eV) for the normal modes of

cyclopentanone

j �
ð1Þ
j �

ð2Þ
j �

ð3Þ
j �

ð4Þ
j �

ð5Þ
j

1 0.0237 0.0370 0.0159 0.0223 0.0316
3 0.0049 0.0100 0.0018 0.0019 0.0072
8 0.0006 0.0005 0.0002 0.0013 0.0001

16 -0.0001 -0.0029 0.0052 0.0003 0.0019
28 � � � � � � � � � � � � � � �

Table A.30 Off-diagonal bilinear coupling constants lðv;wÞjj0 (in eV) for the normal modes of
cyclopentanone

lð2;3Þjj0
1 3 8 16 28

1 � � � � � � -0.0024 � � � -0.0203
3 � � � � � � -0.0011 � � � -0.0057
8 -0.0024 -0.0011 � � � � � � � � �

16 � � � � � � � � � � � � 0.0063
28 -0.0203 -0.0057 � � � 0.0063 � � �
lð2;4Þjj0

1 -0.0052 � � � � � � 0.0150 � � �
3 � � � 0.0042 � � � -0.0082 � � �
8 � � � � � � 0.0037 � � � -0.0221

16 0.0150 -0.0082 � � � -0.0081 � � �
28 � � � � � � -0.0221 � � � � � �
lð3;4Þjj0

1 � � � � � � 0.0085 � � � � � �
3 � � � � � � -0.0022 � � � 0.0105
8 0.0085 -0.0022 � � � � � � � � �

16 � � � � � � � � � � � � � � �
28 � � � 0.0105 � � � � � � � � �

Table A.29 Off-diagonal linear coupling constants kðv;wÞj (in eV) for the normal modes of
cyclopentanone

j kð2;3Þj kð2;4Þj kð3;4Þj

1 0.1572 � � � 0.0821
3 -0.0838 � � � -0.0156
8 � � � -0.1206 � � �

16 -0.2237 � � � -0.0497
28 � � � 0.0620 � � �
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Table A.31 Off-diagonal linear-quadratic coupling constants gðv;wÞjj0 (in eV) for the normal modes
of cyclopentanone

gð2;3Þjj0
12 32 82 162 282

1 � � � -0.0007 -0.0028 -0.0007 -0.0037
3 � � � -0.0049 0.0006 0.0029 0.0049
8 � � � � � � � � � � � � � � �

16 -0.0012 0.0005 0.0118 0.0004
28 � � � � � � � � � � � � � � �
gð2;4Þjj0

1 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
8 0.0049 0.0021 0.0071 0.0002 � � �

16 � � � � � � � � � � � � � � �
28 -0.0087 -0.0010 � � � � � � � � �
gð3;4Þjj0

1 -0.0062 � � � -0.0003 0.0006 -0.0012
3 -0.0086 0.0041 0.0007 0.0017 -0.0009
8 � � � � � � � � � � � � � � �

16 0.0007 -0.0045 -0.0003 0.0005 � � �
28 � � � � � � � � � � � � � � �
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Appendix B
Supporting Information for Chapter 8

B.1 Conical Intersections

The geometries of the four minimum energy conical intersections (MECI) of
cyclopentadiene (CPD) are depicted in Tables B.1, B.2, B.3, B.4. The values of the
descriptive coordinates discussed in Chap. 8 for all the MECIs are given in
Table B.5. Figure B.1 depicts the linearly interpolated (in Cartesian coordinates)
and relaxed potential energy surfaces from the Franck-Condon geometry to the
MECIs. The relaxed surfaces were obtained by use of a Nudged Elastic Band
algorithm (NEB) [8, 9] interfaced to MOLPRO 2006.2 [10]. The NEB method is
conventionally used for finding the minimum energy path between a pair of local
minima or stable states, however, inhere it is used where at least one of the
endpoints is not such a configuration. This use of NEB can lead to ambiguity for
the path around the endpoint. However, the method is only invoked to demonstrate
that barriers present on interpolated potential energy surfaces might not be present
if the surfaces are relaxed, and as such whether the NEB method converges to the
actual minimum energy path is not of importance here. Figure B.2 shows the
potential energy surfaces of the MECIs in the branching space.

T. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion, Springer Theses,
DOI: 10.1007/978-3-319-00386-3, � Springer International Publishing Switzerland 2013
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Table B.1 Geometry of the eth1 MECI (in Å)

Atom x y z

C -0.237305 -0.045771 1.333271
C 0.138831 1.076571 0.356015
C 0.163163 -1.083575 0.351376
C -0.489140 -0.749858 -0.974490
C -0.095690 0.601737 -0.976102
H -1.313034 -0.065797 1.536982
H 0.339337 -0.036818 2.255284
H 0.756636 1.917868 0.634213
H 1.201292 -1.430628 0.375283
H -0.508682 -1.398627 -1.836017
H 0.044593 1.214900 -1.860533

Table B.2 Geometry of the eth2 MECI (in Å)

Atom x y z

C -0.236206 -0.032080 1.291252
C 0.215824 1.011314 0.362281
C 0.116410 -1.325582 0.406327
C -0.234085 -0.755477 -0.972845
C -0.048608 0.632833 -1.006990
H -1.323021 -0.020961 1.404294
H 0.240820 -0.010103 2.270001
H 0.818225 1.873797 0.644010
H 1.219464 -1.336168 0.427286
H -0.622274 -1.355418 -1.790937
H -0.146550 1.317845 -1.839398

Table B.3 Geometry of the dis MECI (in Å)

Atom x y z

C 0.257136 -0.014429 1.318018
C -0.039247 1.209763 0.385995
C -0.197883 -1.031573 0.362890
C 0.336413 -0.706479 -0.999024
C 0.147293 0.655824 -0.995520
H -0.282847 0.008378 2.261221
H 1.335113 -0.086087 1.491612
H -1.017542 1.652186 0.577767
H -1.121552 -1.596069 0.499694
H 0.425101 -1.383974 -1.832478
H 0.158015 1.292460 -1.874892
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Table B.5 Values of the bond alternation, backbone torsion, C=C twist and CH2 bend for the
four MECIs of CPD

Coordinate eth1 eth2 dis S2S1

Bond alternation/Å 1.54 1.58 1.62 1.62
Backbone torsion/deg 24.5 8.5 18.3 0.0
C=C twist/deg 50.5 58.9 43.4 31.7
CH2 bend/deg 40.1 36.9 37.0 37.2
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Fig. B.1 Potential energy surfaces for CPD connecting the Franck-Condon geometry with the
four MECIs as a function of mass-weighted displacement. Linearly interpolated (in Cartesian
coordinates) potential energy surfaces (cyan), along with the S0 (purple) and S1 (magenta)
potential energy surfaces resulting from relaxation on the S1 state (T. S. Kuhlman et al., Faraday
Discuss. 157, 193–212 (2012)—Adapted by permission of The Royal Society of Chemistry).
(a) eth1 MECI / FC ? eth2 MECI. (b) dis MECI / FC ? S2S1 MECI

Table B.4 Geometry of the S2S1 MECI (in Å)

Atom x y z

C -0.222312 0.000055 1.295210
C 0.173705 1.094371 0.345488
C 0.173641 -1.094866 0.345542
C -0.179011 -0.698783 -1.007255
C -0.178394 0.698547 -1.007401
H -1.302930 -0.001162 1.504808
H 0.331448 0.001044 2.231690
H 0.908564 1.853016 0.594770
H 0.910036 -1.852080 0.594095
H -0.309099 -1.362005 -1.850634
H -0.305647 1.361864 -1.851033

Appendix B: Supporting Information for Chapter 8 129



−0.1
0

0.1

−0.1
0

0.1

−0.2

0

0.2

0.4
Po

te
nt

ia
l E

ne
rg

y 
/ e

V

g
h

Å·amu 1/2

−0.1
0

0.1

−0.1
0

0.1

−0.2

0

0.2

0.4

Po
te

nt
ia

l E
ne

rg
y 

/ e
V

g
h

Å·amu 1/2

−0.1
0

0.1

−0.1
0

0.1

−0.2

0

0.2

0.4

Po
te

nt
ia

l E
ne

rg
y 

/ e
V

g
h

Å·amu 1/2

−0.1
0

0.1 −0.1
0

0.1

−0.2

0

0.2

0.4

Po
te

nt
ia

l E
ne

rg
y 

/ e
V

g

h

Å·amu 1/2

(a) (b)

(c) (d)

Fig. B.2 MECIs of CPD in the branching space of the scaled derivative coupling and gradient
difference vectors. All MECI exhibit a peaked geometry (T. S. Kuhlman et al., Faraday Discuss.
157, 193–212 (2012)—Adapted by permission of The Royal Society of Chemistry). (a) eth1
MECI. (b) eth2 MECI. (c) dis MECI. (d) S2S1 MECI
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